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Abstract: In this article, we develop a method to obtain approximate solutions of nonlinear coupled partial
differential equations with the help of Laplace Decomposition Method (LDM). The technique is based on
the application of Laplace transform to nonlinear coupled partial differential equations. The nonlinear term
can easily be handled with the help of Adomian polynomials. We illustrate this technique with the help of
three examples and results of the present technique have closed agreement with approximate solutions
obtained with the help of Adomian Decomposition Method (ADM).
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INTRODUCTION

The decomposition method has been shown to
solve [1-12] efficiently, easily and accurately a large
class of linear and nonlinear ordinary, partial,
deterministic or stochastic differential equations. The
method is very well suited to physical problems since it
does not require unnecessary linearization, perturbation
and other ®strictive methods and assumptions which
may change the problem being solved, sometimes
seriously.

The Laplace Decomposition Method (LDM) is a
numerical algorithm to solve nonlinear ordinary, partial
differential equations. Khuri [13, 14] used this method
method for the approximate solution of a class of
nonlinear ordinary differential equations. Agadjanov
[15] applied this method for the solution of Duffing
equation. Elgazery [16] exploit this method to solve
Falkner-Skan equation. This numerical technique
basically illustrates how the Laplace transform
may be used to approximate the solutions of the
nonlinear differential equations by manipulating the
decomposition method which was first introduced by
Adomian [17].

The present paper aims at offering an alternative
method of solution to the existing ones [18] concerning
to the three nonlinear coupled partial differential
equations. By using Laplace transform algorithm based

on decomposition method for solving coupled nonlinear
differential equations the exact solutions of initial value
problems are obtained.

LAPLACE DECOMPOSITION METHOD

The aim of this section is to discuss the use of
Laplace transform algorithm for the nonlinear partial
differential equations. We consider the general form of
inhomogeneous nonlinear partial differential equations
with initial conditions is given below

Lu+Ru +Nu =h(x,t) 2.1
u(x,0) =£(x), u(x,0) =g(x) 2.2)

where L is second order differential operator L =%, R

is the is remaining linear operator, Nu represents a
general non-linear differential operator and h (x, t) is
source term. The methodology consists of applying
Laplace transform first on both sides of Eq. (2.1)

L[Lu(x,t)]+ L[Ru(x,t)] + L[Nu(x,t)] =L[h(x,H)] (2.3)

Using the differentiation property of Laplace
transform we get
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szL[ u(x,t)]— sf(x)—g(x)+ L[Ru(x,t)]

+L[Nu(x,H)] =L[h(x,1)] 29

L[ u(x,t)] :L:)

+&§)+%L[h(x,t)]
1 s 8 1 (2.5)
—S—ZL[Ru(x,t)]—?L[Nu(x,t)]

The second step in Laplace decomposition method
is that we represent solution as an infinite series given
below

u= ium (x,t) (2.6)

m=0

The nonlinear operator is decompose as

Nu(x,0) = A, 2.7

m=0

where Ay, are Adomian polynomials [12] of uy, u;, uy,
.., Uy and it can be calculated by formula given below

L[ (&
A =— N A ,m=0,1,2,..., 2.8
LN ﬂm 09)

Putting Eq. (2.6), Eq. (2.7) and Eq. (2.8) in
Eq. (2.5) we will get

- f(x) g(x)
L{ D u,(x,t) } . L[h( )

m=0 (2.9)
——L[Ru(x t)]——L{ZA }
S m=0
S, x,0] =2 B L L1 ]
m=o S8 8 (2.10)

1 1 -
—S—ZL[RU(X,t)] _S_ZL |:r;]Ami|

On comparing both sides of the Eq. (2.10) we have

Luy(x,)] = f(x) g(x)+ —L[h(x,H]=K(x,s) (2.11)
L] ul(x,t)]:7si2L[Ru0(x,t)]fsl—2[A0] 212)
Lu 0] ==L [Ruc0]-=L[A] @13)

In general, the recursive relation is given by

L[u,, (x.0]= —S%L[Run(x,t)] fsizL[A“], nz0  (214)

Applying inverse Laplace transform to Eq. (2.11)-
(2.14), So our required recursive relation is given below

U, (x,t) =K(x,t) (2.15)
u L (x) =-L [ IZL[Run(x,t)]+L2L[A“]} n20 (2.16)
S

where K(x,t) represent the term arising from source
term and prescribe initial conditions. Now first of all we
applying Laplace transform of the terms on the right
hand side of Eq. (2.16) then applying inverse Laplace
transform we get the values of uy, u,,...,u, respectively.

APPLICATIONS

To illustrate this method for coupled nonlinear
partial differential equations we take three examples in
this section.

Example 1: Consider nonlinear partial differential
equation [18]

2
0 1;(:’0 +u’ —ul =0, t>0 3.1

with initial condition
u(x,0)=0 (3.2)
u; (x,0)=¢" (3.3)
Applying Laplace transform algorithm we get

su(x,8) - su(x,0)—u, (x,0)= L[ u} —u’] (3.4)

u(x,s) = u(); .0) m TL [u -u ] (3.5)

s?

Using given initial condition Eqgs. (3.5) becomes

X

u(x,s) ::—2 +i2L [ui —uz} (3.6)

S

Applying inverse Laplace transform to Egs. (3.6)
we get

u(x,t)=e't+L" [%L [ui —uzﬂ 3.7

N

14
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The Laplace
[13-16] assumes a
u (x, t) is given by

Decomposition Method (LDM)
series solution of the function

u=Yu,(x.0 (3.8)

Using Egs. (3.8) into Egs. (3.7) we get

iun(x,t) =e't +L_1LLZL{iAH(u)— iB‘(u) H 3.9

n=0

In above Egs. (3.9) A, (u) and B, (u) are Adomian
polynomials [12] that represents nonlinear terms. So
Adomian polynomials are given below

S A, (0) =u? (3.10)
3B, (u) =u? 3.11)

The few components of the Adomian polynomials
are given as follow

Afu)=ul, 3.12)
A =268, G.13)
A=Y,
B(u) = (3.15)
B(uw) = 2u,u, (3.16)
B, (u)= iuiun_i 3.17)

From Egs. (3.9)-(3.11) our required recursive
relation is given below

ufx,t)=e't (3.18)

u, ,,(x,t) = L“LizL{iAn(u)— iB“(u)ﬂ, n=0 (3.19)

The first few components of u, (xt) follows
immediately upon setting

u(x,t)= L'l[izL[Ao(u) - Bo(u)]}
s

:Lﬁl_sizL[U.(z)x —ui]:|
= _Sl_zL[tzé x _tzezx:ﬂ

e S%L[o]}

u (x,)=0 (3.20)

Therefore the solution obtained by LDM is given below

u(x,t) = iun(x,t) =e't

n=0

(321)

Which is same as solution obtained by ADM [18].

Example 2: Consider system of nonlinear coupled
partial differential equations [18]

e (3:22)
%—quy =5 (3.23)
W—uxvy =5 (3.24)
with initial conditions G.14)

u(x,y,0) =x+2y (3.25)
v(x,y,0)=x -2y (3.26)
w(x,y,0) =—x +2y 3.27)

Applying the Laplace decomposition method
su(x,y,s)—u(x,y,0) :L[l +VXWy:| (3.28)
sv(x,y,s) — v(x,y,0) =L [5 + wxuyJ (3.29)
sw(X,y,s) —w(x,y,O):L[S-kuXVy] (3.30)

Using initial conditions Egs. (3.28)-(3.30) becomes

u(x,y,s):stJré(er 2y)+éL[vxwy] (3301
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5 1 1
V(X,y,S)ZS—2+g(X7 2y)+;L[wxuy] (3.32)

w(x,y.s) = :—2+ é(—x +2y) +éL [u,v, ] (3.33)

Applying inverse Laplace transform we get

u(x,y,t) =t +(x +2y)+ L’l[lL[wayﬂ (3.349)
s
V(X,y,t) =5t +(x —2y) + L [lL[wxuyﬂ (3.35)
s
w(x,y,t) =5t +(—X+2y)+L’[lL[uXVy ﬂ (3.36)
s

The recursive relations are

u, (x,y,t) =t+(x+2y) (3.37)

um(x,y,t)_L‘{lL{icr(v,w)ﬂ, n>0 (3.39)
S

n=0

Vo (X,y,t) =5t +(x —2y) (3.39)

n=0

Vo (X,y,t) = LI{EL[iDn(u,w)ﬂ, n>0 (3.40)
$

W, (X,¥,t) =5t +( —x+2y) (341

w, ., (xy,t)=L" {lL {iEn(u,V)ﬂ, n>0 (3.42)
S n=0

where G, (v, w), D, (u, w) and E, (u, v) are Adomian

polynomials representing the nonlinear terms [12] in

above Egs. (3.37)-(3.42). The few components of

Adomian polynomials are given as follow

C{v,w)=v ,w, (343)
Cv, W) =v, W, + vy W, (344)
C,(v,w) :ilvixwmiy (345)
i=0
Dju,w)=u,w,, (3.46)
Du,w)=u, W, +u, W, (347)

16

D, (v,w)= iwixun_iy (3.48)
i=0

Ey(u,v) = u,, vy, (3.49)

E(u,v)=u,v, +u,v, (3.50)

B (uv)= Y5, (351)
i=0

In view of the recursive relations (3.37)-(3.42) we
obtained other components as follows

u(x,y,t) =L" E/_ [Cv.w) ]}
-L EL[VOXWOy ﬂ

1
" LL[U)@]}
=2t (3.52)

v(x,y,t)=L" {lL [Do(u,w)]}
s

L [éL[WOXuoy]}

—L EL[(—l)(z)]}
= 2t (3.53)

w,(x,y,t)=L" [lL[EO(u,V)]}
s

=L-1EL[uOXvoyﬂ -2t (3.54)

u(x,y,t) = L’l{lL[C(V,W) ]}
s

=L [lL[lewoy-FVOXle } =0 (3.55)
s

v,(x,y,t)=L" {lL [Dl(u,w)]}
s

!
o [;L[wlxuoy +w0xulyﬂ -0 (356)

w,(X,y,t) = L'l[lL[E(u,V) ]}
s

41
e [;L[ulxvoy + uOXVly]} -0 (3.57)
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So the solution of above system of nonlinear partial
differential equations are given below

WO(Xayst):e_x+y (371)

w, —i]n(u,v)

u(x,y,t) :mzzloum(x,t) =x+2y+3t (3.58) W (xy.0) =L 1 n:O _n>0 (372)
_ZKll(u’V)
) n=0
v(X,y,t) = ZVm (x,t)=x -2y +3t (3.59)
e where K (v,w), G (v,w), H (u,w), k (ww), I (uv),
and K, (wv) are Adomian polynomials [12]
Wy 1) = iwm(x’t): x4 2y+3t (3.60) represen.ting nonlinearities .arisir.1g in gbove sy§tem
= of nonlinear coupled partial differential equations.

The few components of above Adomian polynomials

Example 3: Consider system of nonlinear coupled
partial differential equations [18]

auCey.0)

D v, -y, = (3.61)

VYD L u ruw, = (3.62)
at ’ ’

aw(:;y,t) Uy, ULy, = w (3.63)

with initial conditions

u(x,y,0)=e*" (3.64)
v(x,y,0) =e*" (3.65)
w(X,y,0)=¢" (3.66)

Applying the same procedure as applied in
previous examples we arrive at recursive relations as
follows

uO(XaYJt) = ex+y (367)
SE(v,w)
u Oy, =L S 00 (368)
Y36, (vow) -,
n=0
Vo(X,y,t) =" (3.69)

v, — ZHn(u,w)
=0 ,n>0 (3.70)

—iln(u,w)

n=0

Vn+l (X>Y>t) = L71 lL

are given below
F(v,w)=v oyW 0x

E(V,W) = Vlyw()x + V()ywlx
n
F“(V,W) = Zviywmix
i=0
G,(v,w)=v,w oy

G(v,w)= VisWoy + Vo, Wy,

n
G,(v,w)= Zvian—iy

i=0
H{u,w)=w ,u,
H(u,w)=w 1xWoy T Wo Uy
n
H“(u,W) = Zwixun —iy
i=0
I (u,w) = WoyUox

Il(uaw) =W lyuOX +W0yulx

n
I (u,w)= Z:wiyun i
i=0

Jo(u,v) =u ox Yoy

J(u,v)=1u,,v,, +uy v,

Jn (u,V) = nzuixvn —iy

i=0

17

(3.73)

(3.74)

(3.75)

(3.76)

(3.77)

(3.78)

(3.79)

(3.80)

(381)

(3.82)

(3.83)

(3.84)

(3.85)

(3.86)

(3.87)
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K, (u,v) =1u,,v,, (3.88)

K{u,v)=u,,vy, +uy, v, (3.89)

K, (u,v) = iuiyvn,ix (3.90)
i=0

Therefore other components of the solutions are
given below

u(x,y,t)=L" |:1L[FO(V,W) -G (v,w)—u, ]]
s

=" %L [VoywOX — Vox Wy —uOJ:|

— | l X —! —X+ _ X— — X+ _ X+
—LI_SL[e YeTXTY _e¥ Ve ¢ y]}
a1 +

=L _SL[—e Y]}

et L l{ll} Y (3.91)
SS

v(x,y,t)=L" {lL[V0 —Hfu,w)- Igu,w)]J
s

=L él- [ex = W Uy, — Wo, Ui, ]}
(1
— Lfl —L ex—y 4 efx+yex+y _ efx+yex+y
B 1
e _lL[e*‘yﬂ
| s
L ll} . (3.92)
SS

w,(x,y,t)=L" [lL[w(J =J,(u,v)— Ko(u,v)]}
s

=L _éL |:w0 — U, Vo, —uOyVOX]:|

Y
=L _SL[e Y4eet Y —e* e yﬂ
-1 _l — X+

=L _SL[e Y]}

— e—x+ )L— 1|:lli| :e—x-v-yt
SS

(3.93)

u{x,y,t)=L'l[lL[Fl(v,w)—Gl(v,w)—u1 ]}

s

=L |:1L [(Vlyw()x + Voy Wiy )_(leWOy T Vo Wiy ) ul]:|
s

/-1 1 X+ _ox+ y -1 1 _eX+y 2
=L [—L[te Y]} =e* L [—3} ==t

(3.94)

S S

18

v, (X’y=t) =L l:éL [Vl - HI(U,W) - I{U,W) ]:|
a1
=L |:;L [VI - (Wlxu0y Wiy )- (leu0x + WUy ]:|

e EL[thﬂ - e;y ¢

(3.95)

w,(X,y,t) = L“[lL[w1 -J,(u,v) - Kl(u,V)]}
s

o)1
=L l:_L |:W1 - (uleOy +Ug, Vi )- (ulyVOX + u()yle):|:|

$
_ /-1 1 —x+ _e*Xer 2
L [;L[e wﬂ S (3.96)
So our required solutions are given below
u(x,y,t) = Zur(x,y,t)
n=0
tZ
=" +e" Mt =+
2!
2
e {l+t+—+ .............. } =g (3.97)
v(X,y,t) = Zvr(x,y,t)
n=0
t2
=¢"V +& M+ T =+
2!
tZ
=" {l-t-t +?+ ................. } =" (3.98)
W(X,y,t) = D W, (X,¥,t)
n=0
tZ
=e Ve tte T =+,
2!
2
e {1 Flt—Freeeennns } e (3.99)
From (3.21), (3.58)-(3.60) and (3.98)-(3.99),
approximate  solutions  obtained by  Laplace

decomposition method is similar to the solution
obtained by Adomian decomposition method [18].

CONCLUSION

In this article, Laplace dcomposition method
(LDM) is applied to solve nonlinear coupled partial
differential equations with initial conditions. The results
of three examples are compared with ADM [18]. The
results of these three examples tell us that both methods
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can be used alternatively for the solution of high-order
initial value problems.
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