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Homotopy Perturbation Method and Finite Difference Method
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Abstract: In the research, special type of linear volterra integro-differential equations is considered. This

paper compares the

Homotopy perturbation method (HPM) with finite difference method for solving

these equations. HPM is an analytical procedure for finding the solutions of problems which is based
on the constructing a Homotopy with an imbedding parameter p that is considered as a small parameter.
The finite difference method, based upon Simpson rule and Trapezoidal rule, transforms the volterra
integro-differential equation into a matrix equation. The results of applying these methods to the linear
integro-differential equation show the simplicity and efficiency of these methods.
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INTRODUCTION

Mathematical modeling of reallife problems
usually results in functional equations, e.g. partial
differential equations, integral and integro-differential
equation, stochastic equations and others. Many
mathematical formulations of physical phenomena
contain integro-differential equations, these equations
arise in fluid dynamics, biological models and chemical
kinetics. Integro-differential equations are usually
difficult to solve analytically so it is required to obtain
an efficient approximate solution. Several numerical
methods for approximating the Fredholm or volterra
integro-differential equations are known. Single-term
Walsh series method for volterra integro-differential
equations has been proposed by Sepehrian and
Razzaghi [1]. In [2], Brunner applied a collocation-type
method to Volterra-Hammerstein integral equation as
well as integro-differential equations. Compact finite
difference method has been used for integro-differential
equations by Zhao and Corless [3]. For methods using a
quadrature rule, degenerate kernels, interpolation or
extrapolation [4-7]. In Refs [8-10], Taylor series,
Chebyshev collocation and Wavelet-Galerkin methods
are used for solving such problems. In recent years, the
application of homotopy perturbation method (HPM)
[11-13] in nonlinear problems has been developed by
scientists and engineers, because this method deforms
the difficult problem under study into a simple problem
which is easy to solve. Most perturbation methods

assume a small parameter exists, but most nonlinear
problems have no small parameter at all. Many new
methods, such as the variational method [14-16],
variational iterations method [17-22], various modified
Lindstedt-Poincare methods [23-26] and others [27, 28]
are proposed to eliminate the shortcoming arising in the
small parameter assumption. A review of recently
developed nonlinear analysis methods can be found in
[29]. Recently, the applications of homotopy
perturbation theory have appeared in the works of many
scientist [30-35]; it has become a powerful
mathematical tool [36, 37]. In this paper, we propose
the use of HPM to solve special type of linear volterra
integro-differential equations of the form:

y'(x)+u(x)y(x):f(x)+XJaxk(x,t)y(t)dt,a <x<b

y(a)=yo

M

And comparisons are made between finite
difference method and homotopy perturbation method.
Where the functions f'(x), u (x) and the kernel k (x, t)
are known and y (x) is the solution to be determined.

HOMOTOPY PERTURBATION METHOD
To illustrate the basic ideas of the homotopy

perturbation method, we consider the following
nonlinear differential equation:
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Ay -f()=0, r1eQ(2) 2)

with the boundary conditions

oy
B[y, 8n) =0
where A is a general differential operator, B is a
boundary operator, f(r) is a known analytical function
and I' is the boundary of the domain Q. Generally
speaking, the operator 4 can be divided into two parts
which are L and N where L is linear, but N is nonlinear.

Therefore equation (2) can therefore be rewritten as
follows:

reQ 3

L(y)+N(y)-f(r)=0 “

By the homotopy perturbation technique, we
construct a homotopy v (r, p): Qx[0,1]>R which
satisfies:

H(v,p)=(1-p)[L(v)-L(ys) J+P[A(v)~

pel0.1,
where pe [0,1] is an embedding parameter and y, is an

initial approximation of equation (2).Obviously, from
these definitions we will have:

H(v,0)=L(v)-L(y,)=0
H(v,1)=A(v)-f(r)=0

The changing process of p from zero to unity is just
that of v (r, p) from yq (r) to y (1). In topology, this is
called deformation and L (v) — L (yo) and A (v)-f (r) are
called homotopy. According to the HPM, we can first
use the embedding parameter p as a “small parameter”
and assume that the solution of (5) can be written as a
power series in p:

— 2
V=V, +pv, +p°V, +

Setting p = 1, results in the approximate solution of (2):

y=£151v=v0+v1 +v, +...

In order to solve the equation (1) using HPM, we
construct the following homotopy:

H(v,p)=v" -y, +py,

-] () V(O£ (x) =0

+7LJ'

Substituting (6) in (7) and equating the coefficients
of like powers ofp, yield

P vy, =0 ®)
pvi+y, +u(x XJ. (x,t)v, (t)dt—f (x)=0(9)
P v, +u(x KJ. t)dt=0, n>2 (10)

Then starting with an initial approximation y, and
solving the above equations, we can identify v, forn=
1, 2,... and therefore we obtain the n-th approximation
of the exact solution asy, =vo+v+...tvy.

Note: In this section, we consider y (@) =y0 =3

FINITE DIFFERENCE METHOD

In this section, we consider volterra integro-
differential equation in (1) and approximate to solution
by numerical integration and numerical differentiation.

We will subdivide the interval of integration (a,x)
into N =2M equal subinterval of with

h=

where xy is the end point we choose for x. We shall set
to = a and t; = tytjh. Since we will be using either t or x
as the independent variable for the solution y. We will
call x) = tp = a, x = x = ty and x; = a+ih = t;.. We will
refer to the value of the functions f(x) and p (x) at x; as
f (%) = f and ux) = , the value of kernel k (x, t) at
(% tj) as k (x;. tj) = k;j and the approximate value of the
solutiony (x) at x; or t; as y (t;)) =y (x)=y;and y’ (x)=
yi'. k (x. t;) Clearly vanishes for t{>x; as the integration
ends at t;<x,. Note that the particular value y (Xxo) = yo
according to (1).So if we use the trapezoidal rule and
Simpson rule with n subinterval to approximate the
integral in the volterra integro-differential equation (1),
we have

kb o (et ()l )1 (Tl
X2 k(x t) (}itz—[ (xz,to)y(to)+4l(x2 tl)y(tl) (xz tz) ( )} (S. rule)
B3 1500 o] koot s )s() k(2 (12) 2.t (T r)

j:4 k(x, tyf gt z?[k(m,to)y(to)+4 Kxq 1Y (1) 2 K x4 t2)y(t2)+4 K x4 t3)y(t3)+k (x4,t4)y(t )] (S. rule)

(11)
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XN 1 k(x, Jy(t)it= [ K(XN-1,t0)y (to)+k(xN,1,tl)y(t1)+4..+k(xN,1,tN,2)y(tN,z)%k(xN,l,tN,l)y(tN,l):| (T. rule)

110)¥(to 4 Mo t1)y(1) 2 Ko 02 )y (82 )+ +4 Ko i1 )3t ) +R(e oty )¥(E) ] (8- rule)

N k(.9 ()“~—[ (N
Also the integro-differential equation (1) is approximated by (compact form)
, 1 1
Vi +upyp =f+ “1[31‘10 Yo +3k11Y1}
, Ah,
Y2+ y2=f +T[k20 Y+4k21y1+k22y2 |
1 | (12)
y3 +13y3=f3 +ih [3k30yo+k3 v1 k32y2 7k3 38’3}

, Lh
Ya+u4y4="T4 +T[k4o Y0 +4ka1y1 2kq2y2 +4kg 3 +k 44y 4 |

, 1 1
YN-1 TUN-1YN-1 = fN-1 +2h [EkN—1,0yo+kN—1 ,¥1++KN-1,N 2YN-2 5 kN-1,N - YN—J

. Ah
YN +HN}’N:fN+T[kNOY 0+4kN1y1 +2kN2y2 +.. +4K N N-1 }’N—1+kNN)’N]

Now we take advantage of finite differentiation to get

Y2-Y0
2h

341
Y hy +12y2 f2+—[k20yo+4k2 i+k22y2] 13

1 1
tupyr= M‘[—kl vo+zki D’l}

2
y4-y2 -
Sh ka3 =f3+hh [3k30Y0+k31Y1 322 7k3 35’3}

y5-y
52h 3 gy 4= f4+—[k40y0+4k4 1 +2k42 Y2 +4k43 y3+kaays |

YN-YN-2
2h

3YN—4YN-1+YN-2 Ah
5 NyN=fN +T[1<Noyo+4kN y1+2kN2y 2+ KN N-IY N—l+kNN>’N}

1 1
FUNAYN-] =IN—p + kh[EkN—l,OYO“(N —1,V1+-+KkN-IN 2YN-2 5 kN-1,N 4N —1}

The system (13) consists of N equations and can be written in the following matrix form KY =F, where

—(kh2k11—2hu1) 1 0 0 0
2 2
8ih 2)h
—[Tkﬂ +1J —[Tkzz—Zhuz] 1 0 0 0
2 2 2
-22.h"k31 —(2kh k32+1) —(h k33—2hu3) 1 0 0 0
2 2 2 2
_8h 42h 81h 2)h
—ky4] —— 3 k42 —[Tk43 +1J —[TkM—ZhuzJ 1 0 0 . 0

—ZXthN,L] —2kh2kN,1’N,3 —(ZXhsz,l,N,ZJrl)

h? gh2
3 N 3

*(Mlsz—l,N—I*ZhHN—I) 1

2 # 1
4%h 8 2%
kKN,N-3 —{ 3 'N,N—2—1J —[3—kN,N—1+4] —{3—kNN—3—2hHNJ
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YN
and

2hf] +(M121<10 +1)y0

2

2\h

2hf3 + >\,h2k30y0
2

2hf, + 220

3 K40¥o
F=
2hfy_; +2h*k N1 00
2
2th + 27\‘h kNoyO
ILLUSTRATIVE EXAMPLES

Now we apply the methods presented to solve the
following examples:

Example 1:
equation:

Consider the Volterra integro-differential

y'(x)+ y(x):(x 2o +1)efx+5x2+87j:ty(t)dt,0 <x <1 (14)

y(0)=10

which has the exact solution y (x) = 10-xe™". The
numerical results are represented in Table 1.

To apply the homotopy perturbation method to this
equation, we consider yo (x) = 10 as initial
approximation of the exact solution and regarding (8)
we start with v (x) = yp (x). Since vy (a) = B and y =
votvitvot... we can set vy(a) = 0, (n>1) as initial
conditions for equations (9) and (10).

Example 2: As the second example consider the
Volterra integro-differential equation: [1]

X
x(1+2x) f X_t)y(t)dt, 0<x<1

y'(x)+y(x):1 +2X+'[0 e (15)

y(0)=1

10

Table 1: Numerical results for example 1

Finite difference HPM Exact

X; method with N = 14 with N =4 solutions

0.0714 9.933780913 9.933495 9.933495516
0.1428 9.876458584 9.876160 9.876160300
0.2142 9.827589590 9.827049 9.827046197
0.2857 9.785803615 9.785307 9.785292202
0.3571 9.750832589 9.750163 9.750116951
0.4286 9.721466032 9.720923 9.720811832
0.5000 9.697552931 9.696975 9.696734670
0.5714 9.678042251 9.677777 9.677303930
0.6428 9.662857435 9.662846 9.661993413
0.7143 9.651100634 9.651781 9.650327386
0.7857 9.642739377 9.644241 9.641876128
0.8571 9.637018786 9.639963 9.636251847
0.9286 9.633929509 9.638737 9.633104936
1.0000 9.632846912 9.640444 9.632120559

Table 2: Numerical results for example 2

Finite difference HPM Exact

Xi method with N = 12 with N =2 solutions

0.0833 1.00616079 1.0069712 1.006968613
0.1667 1.02810545 1.0282220 1.028167177
0.2500 1.06328807 1.0648317 1.064494459
0.3333 1.11700723 1.1187838 1.117519069
0.4167 1.18751936 1.1931987 1.189592856
0.5000 1.28254044 1.2926690 1.284025417
0.5833 1.40167958 1.4237286 1.405337908
0.6667 1.55629211 1.5955060 1.559623498
0.7500 1.74852146 1.8206228 1.755054657
0.8333 1.99578448 2.1164213 2.002596211
0.9167 2.30508217 2.5066179 2.317010501
1.0000 2.70473683 3.0235181 2.718281828

Table 3: Numerical results for Example 3

Xi

Finite difference
method with N =12 with N=10

HPM

Exact

solutions

0.0833
0.1667
0.2500
0.3333
0.4167
0.5000
0.5833
0.6667
0.7500
0.8333
0.9167
1.0000

0.9409611903
0.8560967849
0.8221926661
0.7521848166
0.7379172201
0.6768034806
0.6667601409
0.6235899136
0.6149784301
0.5862745171
0.5770459174
0.5643959592

0.9232408643
0.8582656556
0.8032653310
0.7567085596
0.7172991016
0.6839397209
0.6557016132
0.6317985685
0.6115650814
0.5944378021
0.5799398782
0.5676676511

0.9232408623
0.8582656554
0.8032653300
0.7567085597
0.7172991041
0.6839397204
0.6557016122
0.6317985690
0.6115650802
0.5944378015
0.5799398730
0.5676676417
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With the exact solution y(x)=ex2. Table 2 illustrate

the numerical results.

If we want to solve this equation by mean
of  homotopy perturbation method, Considering
yo (X) = 1 and regarding (8), we start with vy (X) = yg (X)
Since vo (@)= and y = votv tv,+... we can set v,
(a) = 0, (n>1) as initial conditions for equations (9)
and (10).

Example 3: Consider [38]

y’(x)+y(x)=joxe<'_x)y(t)dt, 0<x<1

y(0)=1

(16)

with the exact solution y (x) = €~ cosh xResults are
shown in Table 3.

In order to solve this equation by mean of
homotopy perturbation method, We assume yo (x) =1
and set vy (x) = yo (X). We solve the above equations
with vo (@) = B and v, (@ = 0, (n>1) as initial
conditions.

CONCLUSION

Integro-differential equations are usually difficult
to solve analytically. In many cases, it is required to
obtain the approximate solutions. In this work, we
proposed the homotopy perturbation method for solving
linear volterra integro-differential equations and
comparisons were made with the finite difference
method. Illustrative examples are included to
demonstrate the validity and applicability of these
techniques.
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