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Abstract: In the research, special type of linear volterra integro-differential equations is considered. This 
paper compares the Homotopy perturbation method (HPM) with finite difference method for solving 
these equations. HPM is an analytical procedure for finding the solutions of problems which is based 
on the constructing a Homotopy with an imbedding parameter p that is considered as a small parameter. 
The finite difference method, based upon Simpson rule and Trapezoidal rule, transforms the volterra
integro-differential equation into a matrix equation. The results of applying these methods to the linear 
integro-differential equation show the simplicity and efficiency of these methods.
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INTRODUCTION

Mathematical modeling of real-life problems
usually results in functional equations, e.g. partial
differential equations, integral and integro-differential
equation, stochastic equations and others. Many
mathematical formulations of physical phenomena
contain integro-differential equations, these equations 
arise in fluid dynamics, biological models and chemical 
kinetics. Integro-differential equations are usually
difficult to solve analytically so it is required to obtain 
an efficient approximate solution. Several numerical
methods for approximating the Fredholm or volterra
integro-differential equations are known. Single-term
Walsh series method for volterra integro-differential
equations has been proposed by Sepehrian and
Razzaghi [1]. In [2], Brunner applied a collocation-type
method to Volterra-Hammerstein integral equation as 
well as integro-differential equations. Compact finite
difference method has been used for integro-differential
equations by Zhao and Corless [3]. For methods using a 
quadrature rule, degenerate kernels, interpolation or
extrapolation [4-7]. In Refs [8-10], Taylor series,
Chebyshev collocation and Wavelet-Galerkin methods 
are used for solving such problems. In recent years, the 
application of homotopy perturbation method (HPM) 
[11-13] in nonlinear problems has been developed by 
scientists and engineers, because this method deforms 
the difficult problem under study into a simple problem 
which is easy to solve. Most perturbation methods 

assume a small parameter exists, but most nonlinear 
problems have no small parameter at all. Many new 
methods, such as the variational method [14-16],
variational iterations method [17-22], various modified 
Lindstedt-Poincare methods [23-26] and others [27, 28]
are proposed to eliminate the shortcoming arising in the 
small parameter assumption. A review of recently
developed nonlinear analysis methods can be found in 
[29]. Recently, the applications of homotopy
perturbation theory have appeared in the works of many 
scientist [30-35]; it has become a powerful
mathematical tool [36, 37]. In this paper, we propose 
the use of HPM to solve special type of linear volterra 
integro-differential equations of the form: 

( ) ( ) ( ) ( ) ( ) ( )

( )

x

a

0

y x x y x f x k x,t y t dt,a x b

y a y


′ + µ = + λ ≤ ≤


 =

∫ (1)

And comparisons are made between finite
difference method and homotopy perturbation method. 
Where the functions f (x), µ (x) and the kernel k (x, t)
are known and y (x) is the solution to be determined.

HOMOTOPY PERTURBATION METHOD

To illustrate the basic ideas of the homotopy
perturbation method, we consider the following
nonlinear differential equation:
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( )A(y) f(r) 0, r , 2− = ∈Ω (2)

with the boundary conditions

yB y, 0, r
n
∂  = ∈Ω ∂ 

(3)

where A is a general differential operator, B is a
boundary operator, f (r) is a known analytical function 
and Γ is the boundary of the domain Ω . Generally 
speaking, the operator A can be divided into two parts 
which are L and N where L is linear, but N is nonlinear.
Therefore equation (2) can therefore be rewritten as 
follows:

( ) ( ) ( )L y N y f r 0+ − = (4)

By the homotopy perturbation technique, we
construct a homotopy ν (r, p): Ω×[0,1]→R which
satisfies:

( ) ( ) ( ) ( ) ( ) ( )
[ ]

0H v,p 1 p L v L y p A v f r 0,

p 0,1, r

= −  −  +  −  =   
∈ ∈Ω

where p∈ [0,1] is an embedding parameter and y0 is an 
initial approximation of equation (2).Obviously, from
these definitions we will have: 

( ) ( ) ( )0H v,0 L v L y 0= − =

( ) ( ) ( )H v,1 A v f r 0= − =

The changing process of p from zero to unity is just 
that of ν (r, p) from y0 (r) to y (r). In topology, this is 
called deformation and L (ν) – L (y0) and A (v)-f (r) are 
called homotopy. According to the HPM, we can first 
use the embedding parameter p as a “small parameter”
and assume that the solution of (5) can be written as a 
power series in p:

2
0 1 2v v pv p v ...= + + +

Setting p = 1, results in the approximate solution of (2): 

0 1 2p 1
y limv v v v ...

→
= = + + +

In order to solve the equation (1) using HPM, we 
construct the following homotopy:

( )

( ) ( ) ( ) ( ) ( )
0 0

x

a

H v,p v y py

p x v x k x,t v t dx f x 0

′ ′ ′= − +

 − −µ + λ + =  ∫

Substituting (6) in (7) and equating the coefficients 
of like powers of p, yield

0
0 0p : v y 0′ ′− = (8)

( ) ( ) ( ) ( ) ( )
x1

1 0 0 0a
p : v y x v x k x,t v t dt f x 0′ ′+ + µ − λ − =∫ (9)

( ) ( ) ( ) ( )
xn

n n 1 n 1a
p : v x v x k x,t v t dt 0, n 2− −′ + µ − λ = ≥∫ (10)

Then starting with an initial approximation y0 and
solving the above equations, we can identify υn for n = 
1, 2,… and therefore we obtain the n-th approximation 
of the exact solution as yn = v0+v1+…+vn.
Note: In this section, we consider y (a) = y0 = β

FINITE DIFFERENCE METHOD

In this section, we consider volterra integro-
differential equation in (1) and approximate to solution 
by numerical integration and numerical differentiation.

We will subdivide the interval of integration (a,x)
into N = 2M equal subinterval of with

Nx a
h , N 1

N
−

= ≥

where xN is the end point we choose for x. We shall set 
t0 = a and tj = t0+jh. Since we will be using either t or x
as the independent variable for the solution y. We will 
call x0 = t0 = a, x = xN = tN and xi = a+ih = ti.. We will 
refer to the value of the functions f (x) and p (x) at xi as 
f (xi) = fi and µ(xi) = µi, the value of kernel k (x, t) at 
(xi, tj) as k (xi. tj) = kij and the approximate value of the 
solution y (x) at xi or ti as y (ti) = y (xi) = yi and y′ (xi) = 
yi′. k (xi. tj) Clearly vanishes for tj>xi as the integration 
ends at tj≤xi. Note that the particular value y (x0) = y0
according to (1).So if we use the trapezoidal rule and 
Simpson rule with n subinterval to approximate the 
integral in the volterra integro-differential equation (1), 
we have 

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( )

x 1 11 k x , t y t d t h k x , t y t k x , t y t (T. rule)1 0 0 1 1 1a 2 2
hx2 k x , t y t d t k x ,t y t 4 k x , t y t k x ,t y t (S. rule)2 0 0 2 1 1 2 2 2a 3

1 1x3 k x , t y t d t h k x ,t y t k x ,t y t k x ,t y t k x ,t y t (T. rule)3 0 0 3 1 1 3 2 2 3 3 3a 2 2

hx4 k x , t y t d ta

 ≈ +∫   

 ≈ + +∫  

 
≈ + + +∫   

≈∫ ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )k x ,t y t 4 k x , t y t 2 k x , t y t 4 k x , t y t k x ,t y t (S. rule)4 0 0 4 1 1 4 2 2 4 3 3 4 4 43
 + + + + 

(11)
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( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

x 1 1N 1 k x , t y t d t h k x ,t y t k x ,t y t ... k x ,t y t k x ,t y t (T. rule)N 1 0 0 N 1 1 1 N 1 N 2 N 2 N 1 N 1 N 1a 2 2
hxN k x , t y t d t k x ,t y t 4 k x ,t y t 2 k x ,t y t ... 4 k x ,t y t k x ,t y t (S. rule)N 0 0 N 1 1 N 2 2 N N 1 N 1 N N Na 3

 − ≈ + + + +∫ − − − − − − − −  

 ≈ + + + + +∫ − − 

Also the integro-differential equation (1) is approximated by (compact form)

1 1y y f h k y k y10 0 11 11 1 1 1 2 2
h

y y f k y 4k y k y2 2 2 2 20 0 21 1 22 23
1 1

y y f h k y k y k y k y3 3 3 3 30 0 3 1 1 32 2 3 3 32 2

hy y f k y 4k y 2k y 4k y k y4 4 4 4 40 0 41 1 42 2 4 3 3 44 43

 ′ + µ = + λ +  
λ′ +µ = + + +  

 ′ +µ = +λ + + +  

λ′ +µ = + + + + +  

(12)

.

.

.
1 1

y y f h k y k y ... k y k yN 1,0 0 N 1,11 N 1,N 2 N 2 N 1,N 1 N 1N 1 N 1 N 1 N 1 2 2
hy y f k y 4k y 2k y ... 4k y k yN N N N N0 0 N1 1 N2 2 N,N 1 N 1 NN N3

 ′ + µ = + λ + + + +− − − − − − − − − − − −  

λ  ′ +µ = + + + + + +− − 

Now we take advantage of finite differentiation to get

y y 1 12 0 y f h k y k y1 0 0 1 1 11 1 12h 2 2
y3 y1 h

y f k y 4k y k y2 2 2 20 0 2 1 1 22 22h 3
y y 1 14 2 y f h k y k y k y k y3 3 3 30 0 31 1 32 2 3 3 32h 2 2

y y h5 3 y f k y 4k y 2k y 4k y k y4 4 4 40 0 4 1 1 42 2 43 3 44 42h 3

−  + µ = + λ +  
− λ

+µ = + + +  

−  +µ = +λ + + + 
 

− λ
+µ = + + + + +  

(13)

.

.

.
y y 1 1N N 2 y f h k y k y ... k y k yN 1,0 0 N 1,11 N 1,N 2 N 2 N 1,N 1 N 1N 1 N 1 N 12h 2 2
3y 4y y hN N 1 N 2 y f k y 4k y 2k y ... 4k y k yN N N N0 0 N 1 1 N2 2 N,N 1 N 1 NN N2h 3

−  − + µ = + λ + + + +− − − − − − − − − − −  

− + λ− −  +µ = + + + + + +− − 

The system (13) consists of N equations and can be written in the following matrix form KY = F, where

( )

( ) ( )

2h k 2h 1 0 0 ... 011 1

2 28 h 2 hk 1 k 2h 1 0 0 ... 021 22 23 3

2 2 22 h k 2 h k 1 h k 2h 1 0 0 ... 031 32 33 3

2 2 2 28 h 4 h 8 h 2 h
k k k 1 k 2h 1 0 0 ... 041 42 43 44 23 3 3 3

K . . . . .
. . . . .
. . . . .

22 h k ...N 1,1

− λ − µ

   λ λ   − + − − µ
   
   

− λ − λ + − − µ

   λ λ λ λ   − − − + − − µ
   
   

=

− λ − ( ) ( )2 2 22 h k 2 h k 1 h k 2h 1N 1,N 3 N 1,N 2 N 1,N 1 N 1

2 2 2 2 28 h 8 h 4 h 8 h 2 h
k ... k k 1 k 4 k 3 2hN1 N,N 3 N,N 2 N,N 1 NN N3 3 3 3 3

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 − λ − λ + − λ − µ− − − − − − − 
 

      λ λ λ λ λ      − − − − − + − − − µ− − −            
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( )2
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2

2 20 0

2
3 30 0

2
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2
N 1 N 1,0 0

2

N N 0 0

2hf h k 1 y

2 h
2hf k y

3
2hf h k y

2 h
2hf k y

3
F .

.

.

2hf h k y

2 h
2hf k y

3

− −

 + λ + 
 

λ + 
 

+ λ 
 

λ + 
 

=  
 
 
 
 

+ λ 
 

λ + 
 
 
 

ILLUSTRATIVE EXAMPLES

Now we apply the methods presented to solve the 
following examples:

Example 1: Consider the Volterra integro-differential
equation:

( ) ( ) ( ) ( )

( )

x2 x 2

0
y x y x x 2x 1 e 5x 8 ty t dt,0 x 1

y 0 10

−
 ′ + = + + + + − ≤ ≤

 =

∫ (14)

which has the exact solution y (x) = 10-xe−x. The
numerical results are represented in Table 1.

To apply the homotopy perturbation method to this 
equation, we consider y0 (x) = 10 as initial
approximation of the exact solution and regarding (8) 
we start with v0 (x) = y0 (x). Since v0 (a) = β and y = 
v0+v1+v2+… we can set vn(a) = 0, (n≥1) as initial 
conditions for equations (9) and (10).

Example 2: As the second example consider the
Volterra integro-differential equation: [1]

( ) ( ) ( ) ( ) ( )

( )

x t x t

0
y x y x 1 2x x 1 2x e y t dt, 0 x 1

y 0 1

−
′ + = + + + ≤ ≤


 =

∫ (15)

Table 1: Numerical results for example 1 
Finite difference HPM Exact

xi method with N = 14 with N = 4 solutions

0.0714 9.933780913 9.933495 9.933495516
0.1428 9.876458584 9.876160 9.876160300
0.2142 9.827589590 9.827049 9.827046197
0.2857 9.785803615 9.785307 9.785292202
0.3571 9.750832589 9.750163 9.750116951
0.4286 9.721466032 9.720923 9.720811832
0.5000 9.697552931 9.696975 9.696734670
0.5714 9.678042251 9.677777 9.677303930
0.6428 9.662857435 9.662846 9.661993413
0.7143 9.651100634 9.651781 9.650327386
0.7857 9.642739377 9.644241 9.641876128
0.8571 9.637018786 9.639963 9.636251847
0.9286 9.633929509 9.638737 9.633104936
1.0000 9.632846912 9.640444 9.632120559

Table 2: Numerical results for example 2 

Finite difference HPM Exact
xi method with N = 12 with N = 2 solutions

0.0833 1.00616079 1.0069712 1.006968613
0.1667 1.02810545 1.0282220 1.028167177
0.2500 1.06328807 1.0648317 1.064494459
0.3333 1.11700723 1.1187838 1.117519069
0.4167 1.18751936 1.1931987 1.189592856
0.5000 1.28254044 1.2926690 1.284025417
0.5833 1.40167958 1.4237286 1.405337908
0.6667 1.55629211 1.5955060 1.559623498
0.7500 1.74852146 1.8206228 1.755054657
0.8333 1.99578448 2.1164213 2.002596211
0.9167 2.30508217 2.5066179 2.317010501
1.0000 2.70473683 3.0235181 2.718281828

Table 3: Numerical results for Example 3

Finite difference HPM Exact
xi method with N = 12 with N = 10 solutions

0.0833 0.9409611903 0.9232408643 0.9232408623
0.1667 0.8560967849 0.8582656556 0.8582656554
0.2500 0.8221926661 0.8032653310 0.8032653300
0.3333 0.7521848166 0.7567085596 0.7567085597
0.4167 0.7379172201 0.7172991016 0.7172991041
0.5000 0.6768034806 0.6839397209 0.6839397204
0.5833 0.6667601409 0.6557016132 0.6557016122
0.6667 0.6235899136 0.6317985685 0.6317985690
0.7500 0.6149784301 0.6115650814 0.6115650802
0.8333 0.5862745171 0.5944378021 0.5944378015
0.9167 0.5770459174 0.5799398782 0.5799398730
1.0000 0.5643959592 0.5676676511 0.5676676417
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With the exact solution ( )
2xy x e .=  Table 2 illustrate 

the numerical results. 
If we want to solve this equation by mean

of homotopy perturbation method, Considering
y0 (x) = 1 and regarding (8), we start with v0 (x) = y0 (x)
Since v0 (a) = β and y = v0+v1+v2+…  we can set vn

(a) = 0, (n≥1) as initial conditions for equations (9) 
and (10).

Example 3: Consider [38]

( ) ( ) ( ) ( )
( )

x t x

0
y x y x e y t dt, 0 x 1

y 0 1

− ′ + = ≤ ≤

 =

∫ (16)

with the exact solution y (x) = e−x cosh x Results are 
shown in Table 3. 

In order to solve this equation by mean of
homotopy perturbation method, We assume y0 (x) = 1
and set v0 (x) = y0 (x). We solve the above equations 
with v0 (a) = β and vn (a) = 0, (n≥1) as initial
conditions.

CONCLUSION

Integro-differential equations are usually difficult 
to solve analytically. In many cases, it is required to 
obtain the approximate solutions. In this work, we
proposed the homotopy perturbation method for solving 
linear volterra integro-differential equations and
comparisons were made with the finite difference
method. Illustrative examples are included to
demonstrate the validity and applicability of these
techniques.
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