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Abstract: This paper describes the analysis for developing the exact solutions for magnetohydrodynamic
rotating flows of a second grade fluid in a porous medium. A umform magnetic field has been applied in a

direction normal to the flow. The Laplace transform procedure has been adopted n the presentation of exact
analytic solutions. Based on Modified Darcy's law, the expressions for dimensionless velocity have been

developed for constant and variable flow cases. The obtained solutions are expressed as a sum of steady-state
and transient solutions satisfying the imposed boundary and imitial conditions. These solutions are presented
graphically and discussed for various parameters of interest.
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INTRODUCTION

The rotating flow of non-Newtonian fluids have
stimulated the mterest of researchers in fluid studies
and 1s an area of research undergoing rapid growth
in the modermn fluid mechanics. This is due to their
wide range of scientific applications in various fields.
The specific applications of rotating non-Newtonian
fluids are encountered in geophysics, specially in the
study of wind generating ocean currents on rotating
earth. Additionally, when the magnetohydrodynamics
(MHD) effects are considered then the rotating flows are
useful in cosmical fluid dynamics and solar physics
particularly in studying the solar cycle and structure of
rotating magnetic stars. In the presence of magnetic
field, the fluid particles experience a force mduced by the
electric current which results m the modification of flow.
The flow of non-Newtonian fluids passing through
porous media are associated in the ground water flow,
thermal oil recovery, food processing and in biophysical
sciences where the human lungs for example are modeled
as a porous layers. The literature survey
that, there exists a growing amount of literature on the

revealed

rotating flows of Newtoman fluids (for example see the
studies [1-13] and the references therein). However, such

attempts are very few in case of non-Newtoman fluids
[14-18].

To the best of authors’® knowledge, so far no study
has been reported to analyze the unsteady MHD flows of
a rotating second grade fluid in a porous medium past an
accelerated plate. Therefore, it 15 proposed here in the
present mvestigation to make such an attempt The
rotating second grade fluid is considered to be electrically
conducting and passing a porous medium. Both constant
and variable flow cases are considered. The closed form
solutions are obtamed using Laplace transform techmque.
The graphical results are displayed to see the effect
various parameters of interest. As a special case, the
results for hydrodynamic fluid in a non-porous space and
those for Newtonian fluid can be easily recovered by
choosing certain values of the mvolved parameters to be
zero. The present investigation may be useful in various
practical and engineering applications, such as to study
the movement of oil or gas and water through the
reservoir of an oil or gas field, underground water in river
beds, water purification process, to study the solar cycle
and structure of rotating magnetic stars.

Constant Accelerated Flow

Mathematical Let us
incompressible rotating second grade fluid bounded by a
rigid plate at z= 0. The fluid is electrically conducting and

Formulation: consider an

fills the porous region z > 0. The z — axis is taken normal
to the plate. Initially, the fluid and plate are both at rest.
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At time # = 0', the fluid and plate both start solid body
rotation with constant angular velocity € parallel to z —
axis. Additionally, a constant acceleration is imposed on
the lower plate and the fluid faraway from the plate 1s at
rest. A uniform transverse magnetic field of strength B, is
applied parallel to the axis of rotation. Tt is assumed that
mnduced magnetic field, the external electric field and the
electric field due to polarization of charges are negligible.
The subsequent fluid motion is analyzed by the following

differential equation [15].
£+ [ZiQ JF V— ( +— JF,
JiNes
(1

in which F = u + #v is the complex velocity and » and v

al
622

Lo oF
P &0

OB}
P

_ve
k

are its real and imaginary parts, p designates the density
of the fluid, v the kinematic viscosity, g the dynamic
viscosity, ¢, viscoelasticity, ¢(0 < ¢ <1) the porosity and
k > 0 the permeability of the porous medium. The
appropriate boundary and initial conditions are

FO H=A4t, Flz,f)-0 asz -, >0, (2)
Fi{z,()=0, Z>0. 3)
Introducing the following dimensionless vanables
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We get the following dimensionless problem
G, G oG
O G kG =0 (3)
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Solution of the Problem: The Laplace transform of Eqs.
(5) and (6) m view of Eq. (7) yields the following equations
in the transformed ¢ -plane

dza(g,q) B (apg+5)
ds? ag+1

G(&.q)

0. (8)

= 1
G(O,q): 72
q

5(5,.9)90 as & >, ©

Equation (8) subject to the boundary conditions (9)
has the following solution

a0q+bo
ag+1

G(’g’,q)—qizexp(rf }, &0 (10)

In order to determine the dimensional velocity
G(&,f):fl{é(é,q)} ., we write Eq. (10) in the following form

Gol(E.q) = Gua)Ga(E.q), (11)
Where
— 1
Gl(q):qT: (12)
= a b
Gz(ffaq)—eXP{—% W(q)}; Wiq)= (;q:ﬁo ,B—
(13)

Denoting G(7)= 1 {61 (q)} Gy (E.7)= 1 {52 (éq)} and

using convolution theorem [19], it 1s easy to write

T

G(£:7)=(G Gy )(1)= [Gi(T-5)G(&us)ds. (14)

0

Laplace inversion of Eq. (12) leads to

G(o=r1 (15

In order to determine g, E0)=1 {Gz(§ q)} we are
using the inversion formula for compound functions [23].
+h

Choosing F(é,q):exp[—%ﬁ} and W(Q)z%’

one

obtains

f@ﬂﬂﬂﬁﬁﬂkﬁégm{ﬁg]GQ
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and
Gy (&, T)__! (Eu)g(u, T)duz\/é__! J_exp{ fau]g(u £, an
Where
g(wt)=L" [exp(—uw(q))} =g ! {1-&- {exp[%j - 1}}— e {3(7)‘*‘ \/a{izeﬁffl (2 aﬂ”)} ap = agf = by,
(18)

in which 7,(.) 1s the modified Bessel function of the first kind of order one.
Hence Eq. (17) implies

Gy(&.T

‘SzaoququmJ‘ ex [‘Szaou}ll(l alm')d (19)
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e

Substitution of Egs. (15) and (19) mnto Eq. (14) yields

£ Jag rr 1 !
G(ér u\/_ [ aOquu+2M££uﬁexp{—m—aou—ﬁs 11(2 alus)(”r—s)du ds. (20
Using
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e

Eq. (20) becomes

G(é,f):*reii;_o T \/aé J‘J'ulexp{éi;aouﬁs}h@ alus)(ffs)du ds.

(21)

The starting selution (21) holds for both small and large times. In order to write as a sum of the steady-state and
transient solutions, we are using the relation

]‘f(éj,ﬂ:,s)ds:Tf(é,r,s)dsfiff(’g’,r,s)ds, (22)
0 0 T

Which gives

G(&)=

& Hé it 1 2
N J\/E:_ﬂt uﬁexp[—i—u—aou—ﬁ,s}ﬂ@ alus)(’c—s)duds

(23)

J_§ quJ_GX [_%—aou ﬁs}[l(Z “1“5)( —s)du ds.
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Variably Accelerated Flow: Here we consider the flow situation in which the fluid motion is caused by the variable

acceleration of the plate. The rest of the problem is same only the boundary condition (2), is replaced by

FO,H=BF >0 24
Introducing the following dimensionless variables
r .pl's (BYS
=—— ¢£= , T= ,
NEYLFNTE TG WTE (25)
the problem transforms mto the following form
G &G aG
R VA S N e )
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GED=7 G 1D~-0 asf-o, 10, (27
GE0)=0, £>0.
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Adopting the procedure of the previous section, we get the following expression for dimensional velocity
éJ_
G(é,r): \/_é jj exp{ é fblu ,Bs}'l(2 bgus)(r - 3)2 du ds,
us
(28)
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- exp| ——=— —byu— Bs || 24fbus )T — s) du ds,
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1
B=—, by=pb—b,
o
The solution (29) thus consists of steady — Graphical Results and Discussion: In this section we
part minus transient one, which fades out with  present the physical illustration of dimensionless complex
mcreasing tume. Further, it 1s important to note velocity G and its dependence on the emerging
that the solutions (23) and (29) satisfy both the — parameters. Specifically, we consider the influence of the

initial and boundary conditions which provide a useful
mathematical check. Tt is also easy to reduce the solutions
(23) and (29) corresponding to hydrodynamic fluid
in a non porous space by substituting M=%=0-

The corresponding solutions for Newtoman fluid can also
be recovered.

58

viscoelastic (second grade) parameter «, magnetic
parameter M, permeability of the medium K and rotation
parameter @ on the (&) real and (») imaginary parts of G.
For this purpose, Figs. (1-8) have been plotted. Here Figs.
(1-4) and (5-8) have been sketched for the cases of
of the plate

constant and variable accelerations

respectively.
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w=1.5,M=0.5,r=0.4, K=2
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Fig.1:Velocity profiles given by Eq. (23) for different values of «.
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w=1.5, a=1, 7=04, K=2
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Fig. 2: Velocity profiles given by Eq. (23) for different values of M.
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w=.04, =16, r=0.2, M=0.5
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Fig. 3: Velocity profiles given by Eq. (23) for different values of K.

61



World Appl. Sci. J., 9 (Special Issue of Applied Math): 55-68, 2010

K=1, =15, 7=0.4, M=0.5

Fig. 4: Velocity profiles given by Eq. (23) for different values of .
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Fig. 5: Velocity profiles given by Eq. (29) for different values of a.
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w=1.5, a=1, =04, K=2
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Fig. 6: Velocity profiles given by Eq. (29) for different values of M.
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Fig. 7: Velocity profiles given by Eq. (29) for different values of K.
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K=1, ¢=15, 7=0.4, M=0.5
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Fig. 8: Velocity profiles given by Eq. (29) for different values of .
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Fig. (1) shows the effect of & on the real and imaginary
parts of velocity. Tt is found that the magnitude of the real
part of velocity mcreases while the imaginary part first
mcreases and then decreases when ¢ 1s increased. In Fig.
(2), it is noted that an increase in M decreases the velocity
profile monotonically for both real and imaginary parts of
velocity. This 18 1 accordance with the fact that magnetic
force acts against the direction of flow and causes the
velocity to slow down. The influence of X on the flow is
illustrated in Fig. (3). As anticipated, an increase in
permeability K of the porous medium reduces the drag
force and hence causes the magnitude of velocity to
increase. The variation of the velocity profiles for rotation
parameter @ is shown in Fig. 4. Tt is obvious to see that for
larger values of @ the real part of velocity 1s decreasing
but quite opposite behavior was observed for the
imaginary part of velocity. The velocity increases with
increasing values of @. As shown in Figs. (5-8) the effects
of the mvolved parameters on the velocity profile in case
of variable accelerated flow are similar to that of constant
accelerated flow in a qualitative sense but quite opposite
quantitatively.

Concluding Remarks: In this paper the exact
analytic solutions for the magnetohydrodynamic flow
of a rotating second grade in a porous medium past an
accelerated plate are obtained using Laplace transform
method. Both constant and variable flow cases are
discussed. Graphical results are prepared to support the
analytical solutions where the effects of second grade
parameter ¢« magnetic parameter A, permeability
parameter X and rotation parameter ¢ are shown. It is
found that velocity is increasing with increasing values of
¢ whereas decreased for the larger values of rotation
parameter. As expected, the effect of magnetic and

permeability parameters on the velocity shows opposite
behavior.
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