World Applied Sciences Journal 9 (9): 1018-1027, 2010
ISSN 1818-4952
© IDOSI Publications, 2010

Optimization of a Sandwich Panel with a Kagome Truss
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Abstract: In this article, we apply design optimization using the APDL programming language to a sandwich
panel including a Kagome core truss. The purpose of this optimization 1s to mimimize the weight of a sandwich

panel operating under tension and bending loads. The calculations consider constants such as C = R {truss
L

radius, R and sandwich panel height, ), ~ _ % (panel thickness, #), ml. values (small truss length) and #l.
L

(large truss length in x-y plane). The optimization relations used for calculating the difference points of
structures include the # and m variables and variations in their span. Later, Kagome trusses and similar trusses

are compared.
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INTRODUCTION

Sandwich panels with core trusses formed from direct
links have distinct advantages compared with other
structures, such as honeycomb structures. Tn addition to
preferable allowances it creates because of its open
architecture, sandwich panels with core trusses exhibit
more endurance capacity than other competitive
structures [1].

In this study, the weight of trussed sandwich panels
1s optimized under a crushing stress (tension). A desirable
combination of width bending and shearing is associated
with plastic and yield strength and these are then
compared with results from other optimized panels. Many
aspects of the optimization process can be studied with
the basic model. The study concludes that a design
relation based on pure moments and combination of
moments, width shearing and the required accuracy for
modeling of buckling behavior all must be considered in
the design process.

Recently, super-light materials with high hardness
and high strength have been considered for use in
structures [2, 3]. Using the new materials in a vehicle, for
example, allows for reduction of the weight as well as
energy consumption. In general, a sandwich panel 15 made
of two integrated sheets and one low-density core.

Honeycomb structures and polymeric sponges are also
made of this type of construction. Recently, truss matrix
structures have been considered as a substitute since
they not only have a similar strength as honeycomb
cores, but it is also possible to use the interior of the
cores for additional applications, such as cooling with
high efficiency [4-7].

Recently, alternative metal matrix (net) materials
with 0.1-10-mm pores have been created using new
construction methods [8-10]. In 2001, the topelogy of net
materials was studied by Krista, among others, using
theoretical and empirical methods. These net (matrix)
materials contain a sandwich structure that includes a
three-dimensional matrix (network) made of solid triangle
rods. They can be used in applications such as a
structures designed for resistance against impact [11], as
multi-application materials (simultaneously load-bearing
and actively-cooling) [12, 13] and as substitutions for
expensive and high-efficiency honeycomb materials.

Past research has focused on sandwich structures
with truss cores using different standard cell topologies,
such as the tetrahedral truss [14, 15], pyramidal truss [16]
and octahedral truss [17]. Pyramid octahedral trussing has
been studied for mechanical applications and the design
has been optimized for special applications and
manufacturing techniques.
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(a)
Fig. 1: Points of a Kagome truss

The Kagome fruss iz a type of trussing network
structure that has similar mechanical properties to an
octagonal truss [4]. Additionally, the Kagome fruss has
high strength against traction, which is the main fracture
mechanism in truss network structures. However, there is
also low anisotropy in its mechanical property. The elastic
hardness of a Kagome frussis exactly similar to that of an
octahedral truss in regard to its special relative density.
The length of each pile in a Kagome fruss iz half that of
each pile in an octahedral truss, resulting in strength
against elastic traction (fension) that is four times the
strength of an octahedral fruss [18-21]. As a result, we
aimed to study a sandwich panel with a Kagome core
truss under tension and bending loads and to examine the
influence of changes in the shell thickness and truss
diameter. The approach chosen for simultaneous
examination of both subjects is an optimization method
that we performed using ANSYS software [22].

Modeling: First, an important task at the start of the
modeling process is to find the points that can be used to
model both the Kagome truss and the pseudo-Kagome
truss. Figures la and 1b show the geomefric relations
between the components of the trusses and the truss
points can be written as follows:
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If the triangle formed by points 1, 3 and 4 iz an isosceles
triangle, then we have the following:

(b)

If the length of the 1-4,3-1 sidesis equal tomL, then

1
L g
x3=—2 (4m2—9n2)2 )

Then, to create a truss with these properties, we must use
the following relation:

3
am?—op? 0= 52 3)
no 2
Algo note that if the length of the 4-3 side is equal to
mL in the Kagome trugs, then we must have the following

relation:

1
£(4m2—9n2)§=im+ijﬁ=ﬁ )
2 2 [

Taking the previous calculation of the points of the
truss, then by adding the 10, 9, 8 and 7 points with the
following coordinates, we can describe the entire
sandwich panel, where pointg 10, 9, 8 and 7 form the
points of the shell:

—X3 —¥3 X3 —¥3
T.|-nL| 8|-nL| 9. nL| 10| nL
L I 0 0 ()

Additionally, for fruss construction in ANSYS
software we use Link 8 elements and for shell
construction we use Shell 63 elements.

Entering the Element Constants (Real Constants) into
the Software: In entering the element constants
(real constants), the Shell 63 elements and Link 8 elements
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are shell thickness and truss cross section, respectively
and the software calculates values using the C, C,
parameters. Also note that these parameters can be
entered manually 1n the program.

G =t=i-cL (6)
L

c;%:» R=C,L M

With the radius of the truss cross-section, we can
calculate of each truss Area and by considering this
point, the formative volume of one small member of the
truss must be equal to one large member of the truss [2, 3].
Then 1if the cross-section 1s considered as a large number
member A and a small number AA, then we have:

1
1 8
ALY + I = Ad(ml) ®)
1
g A 1) 9)
bied

With this description, we can simply assemble the
Kagome sandwich panel and pseudo— Kagome panel.
The programming that performs this operation is given in
the appendix.

The shape that 1s assembled by the ANSY S software
15 shown in Figure 3. In modeling all of the core truss
points, low and high levels are shared. Clearly, all
beginning and ending points of the trusses can move or
rotate m three axes, as directed by this application.
Properties of material are 200Gpa for Yang module, 0.3
for Poisson ratio, 7850& for Density and 355Mpa for
vield stress. e

Important Cases to Consider in Optimization:

+  What variable (s) of this structure should be
optimized (objective function)?

+  What
optimization?

+ What is the mimmum and maximum of these

restrictions must be applied for thus

restrictions?

¢ How can we extract the values that are need for
optimization using different programming/loading?

¢+ How do we find the best method for sclving the
problem?

We answered all of these questions by consideration
and determined that the best variable for optimization
15 the weight of the structure and all restrictions that

apply simple in this problem. For choice of the most
suitable restrictions, we use special articles. The results
show that the restrictions can be expressed by the
following:

1—ct:£:>z:qL

R
2-C=7=R=CL

Maximum Motion under Effect of Each Loading
Safety Factor

Determination of the i, i Limitations Presented in this
Article: The article that was used [4, 5, 22] for evaluation
of the max and mn restrictions 1s represented in a later
part. For calculation of the max and mm values that are
needed for solutton of the problem, we use matrix
construction properties mn the ANSYS software; thus
subject 1s clear in programming that 1s represented n the
appendix. In the software, there are different solution
methods that refer to the following:

First-Order Method: In this method, solution of the
derivatives of the function is considered and applied in
solving the problems such that the dependence variables
change n the extended limit of the design area.

Sub-Problem Approximation: This is an approximate
method for design variables using objective and position
(mode) functions by cuwve-fitting. This method s a
general and suitable method for solving the optimization
problem in engineering fields.

Application of Bending Load to Structure and Reduction
of the Weight of the Structure: By loading the structure
in the y-direction (Figure 2), we consider optimization of
the weight of the structure by applying restrictions
because the truss 1s under high tension by loading in this
direction and define the certainty coefficient (n2) for these
restrictions. With this description, the restrictions are as

follows:

0.0l C, <003 (10)
0.01<C, < 0.03 (11)
0.5<m=1 (12)
2<n<6 (13)
md, < lmm 14
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Fig. 2: loading in y axis direction
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STEP=1
SUB =1
TIME=1
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AN

NOV z5 z00%
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Fig. 3: Deformation, un deformation for y direction
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Fig. 4: Displacement for y direction and bending analysis
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Fig. 5: Comparison of #, value by both first order and sub problem method
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Fig. 6: Comparison Mdy values by first and sub problem method
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Fig. 7: Comparison m values by first and sub problem method
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Fig. 8: Loading in the x axis dirsction tensionload = 30 KN

DISPLACEMENT
STEP=1
SUB =1
TIME=1
DID{ =.001105

AN

MOV 25 2009
01:01:58

Fig. 9: Deformation / un-deformation in the x-direction
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Fig. 10: Displacement in the x direction and tension analysis
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Table 1: Optimized values for the m,n, AMdy, C, C; variables under the influence of bending loading using a first-order method

L (m) (m) Nt Mdy (mm) Ct Cs

0.025 0.88402 2.0049 0.45799 2.84E-02 1.01E-02
0.03 0.73368 2.0058 0.55087 2.49E-02 1.00E-02
0.035 0.73352 2.0106 0.63874 2.13E-02 1.00E-02
0.04 0.73314 2.0205 0.72425 1.87E-02 1.00E-02
0.045 0.73315 2.0124 0.81599 1.66E-02 1.00E-02
0.05 0.73823 2.0041 0.90755 1.49E-02 1.01E-02
0.055 0.73144 2.02 0.99033 1.36E-02 1.01E-02
0.06 0.6569 2.2734 0.98169 1.37E-02 1.01E-02
0.065 0.67275 2.4004 1.0005 1.29E-02 1.01E-02
0.07 0.56967 2.7245 1.0004 1.35E-02 1.01E-02
0.075 0.56888 2.9186 1.0008 1.30E-02 1L.O1E-02
0.08 0.72507 2.8821 1.0083 1.12E-02 1.00E-02
0.085 0.72416 3.0919 0.99851 1.09E-02 1.00E-02
0.09 0.71234 3.2913 0.99856 1.07E-02 1.00E-02
0.095 0.73848 3.4555 0.99469 1.03E-02 1.00E-02
0.1 0.74587 3.6655 0.98534 1.00E-02 1.00E-02
0.105 0.68159 3.8373 1.005 1.00E-02 1.00E-02
0.11 0.64766 4.0786 1.0035 1.00E-02 1.00E-02
0.115 0.61439 4.3072 1.0093 1.00E-02 1.00E-02
0.12 0.59526 4.5934 0.99814 1.00E-02 1.00E-02
0.125 0.56803 4.8242 1.0074 1.00E-02 1.00E-02
0.13 0.55243 5.1182 0.99868 1.00E-02 1.00E-02

Table 2: Optimized values for the m,n, AMdy, C, C; variables under the influence of a bending load by the first-order method

L (m) (m) Nt Mdy (mum) Ct Cs

0.025 0.85662 1.9605 0.4759 3E-02 1.01E-02
0.04 0.74351 1.9607 0.72425 2.09E-02 1.02E-02
0.055 0.6244 2.2535 0.99033 1.63E-02 1.01E-02
0.07 0.5067 2.862 1.0004 1.45E-02 1.01E-02
0.085 0.5017 2.4729 0.99851 1.31E-02 1.01E-02
0.1 0.5 4.0812 0.98534 1.21E-02 1.01E-02
0.115 0.5 4.6925 1.0093 1.13E-02 1.01E-02
0.13 0.5 5.3182 0.99868 1.06E-02 1.01E-02

Table 3: Optimized values for the m,n,, AMd,, C,, (., variables under influence of tension load by sub-problem

L (m) (m) Ns Mdx (mm) Ct Cs

0.025 0.79098 2.0034 0.16244 1.01E-02 2.65E-01
0.03 0.79096 2.0032 0.19511 1.01E-02 1.84E-02
0.035 0.79092 1.9984 0.22826 1.01E-02 1.35E-02
0.04 0.77545 1.9944 0.25626 1.01E-02 1.05E-02
0.045 0.56199 2.0069 0.20731 1.00E-02 1.15E-02
0.05 0.51878 2.0072 0.21243 1.00E-02 1.01E-02
0.055 0.50237 23472 0.19346 1.00E-02 1.01E-02
0.06 0.50237 2.7905 0.17751 1.00E-02 1.01E-02
0.065 0.50237 32725 0.16399 1.00E-02 1.01E-02
0.07 0.50238 37932 0.15236 1.00E-02 1.01E-02
0.075 0.50229 4.3484 0.14236 1.01E-02 1.00E-02
0.08 0.50229 4.9475 0.13347 1.01E-02 1.00E-02
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Table 4: Optimized values for the wvariables under tension load by the sub-problem method for a sandwich panel with a pseudo-Kagome core triss

L (m) Nt Mdy (mm) Ct Cs (m) () Mm
0.025 2.0332 0.45307 2.73E-02 1.19E-02 0.97192 0.62996 1.542828
0.03 2.0501 0.52838 2.32E-02 1.21E-02 0.86994 0.58683 1.48244
0.035 2.1086 0.59144 2.06E-02 1.03E-02 0.80364 0.53339 1.506665
0.04 2.0317 0.71328 1.72E-02 1.00E-02 0.90573 0.60657 1.493199
0.045 1.9708 0.8402 1.49E-02 1.00E-02 0.98782 0.63691 1.550957
0.05 2.8054 0.63288 1.69E-02 1.35E-02 0.75261 0.50138 1.501077
0.055 2.0215 0.99174 1.24E-02 1.00E-02 0.94449 0.62939 1.500643
0.06 2.1716 0.99841 1.20E-02 1.01E-02 0.99897 0.56295 1.774527
0.065 2.6143 0.91285 1.18E-02 1.00E-02 0.96454 0.6458 1.493558
0.07 2.5156 0.99918 1.10E-02 2.70E-02 0.99887 0.56661 1.762888
0.075 5.3884 0.49791 1.55E-02 245E-02 0.92095 0.50502 1.823501
0.08 3.3195 0.86359 1.12E-02 1.02E-02 0.82368 0.56019 1.470358
0.085 3.0777 0.98315 1.04E-02 1.00E-02 0.77367 0.50426 1.534268
0.09 3.3727 0.95146 1.01E-02 1.33E-02 0.82217 0.54768 1.501187
0.095 5.9683 0.56555 1.28E-02 2.65E-02 0.78029 0.52008 1.500327
0.1 5.9797 0.59586 1.21E-02 1.01E-02 0.80593 0.53361 1.510335

Note that the s and 1 values are more impressive variables that determine the formative angle of the truss. Additionalty, the m, s ratio specifies the trss type

and therefore we can compare the #.# ratio between the Kagome core truss and pseudo-Kagome truss, as described in Figure 11.

Also note that this structure 1s under a 20KN
bending load (Figure 3).

To obtain the complete bending load, we closed
the end (terminate) pomts of the sandwich panel to
rotation in the three directions and the displacement of
x, y directions.

Solution of the Problem by the Sub-problem
Approximation Method: After an iterative solution and
changes in the conditions of the problem, the results
show that the number of iterations was larger than 50.
The results are shown in the following:

First-order Method: With
the results
show that the iteration number must be larger than
70 for best convergence. The results from this
method with four different lengths of sandwich panel
are follows:

A  Solution by the
consideration for the mentioned cases,

Application of Tension Load to Structure and Reduction
of the Weight to the Structure by Sub-problem:
Loading in the x-axis direction creates a high tension in
the panels (Figure 6) so that the ns certainty coefficient is
considered for high and low levels (surfaces) and with
regard to constramt for reduction of the structure weight.

Constraints Applied to the Problem Are as Follows:

0.01< C, <0.03 (15

0.01 <C,<0.03 (16)
0.5<m=1 (17)
2<n.<6 (18)
md, <lnm (19

A Solution by the Sub-problem Approximation:
In this method, the conditions and convergence are
similar to those of the bending load, but the difference 1s
that the iteration number 1s reduced to 55. The results are
shown in the following:

Optimization of a Sandwich Panel with a Pseudo-Kagome
Core Truss under the Influence of a Tension Load and
Comparison to a Sandwich Panel with a Kagome Core
Truss: Previously, we observed that a Kagome sandwich
with relations 1 and 2 can be made. In an attempt to
optimize the weight of this sandwich type, with regard to
the applied constramts this Kagome sandwich acts as a
Kagome truss and relations 3 and 25 are added to the
constraints. Because there 1s no equality relation between
the m and » variables, relation 23 is added to the problem
as a restriction. In general, all of the constraints applied in
this problem are as follows:

The solution process and the amount of applied
load are similar to that of the sandwich panel with the
Kagome truss. The results of this
optimization are shown here:

analysis and
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Fig. 11: Comparison of the m, n ratios between the sandwich panels with a Kagome truss and a pseudo-Kagome truss

RESULTS

In comparing the effective variables and tension
loading, we find that the Kagome truss causes the
sandwich panel to stabilize. The pseudo-Kagome
truss will have different issue.

We observed that for many parameters, such as
motion, there is no significant change resulting from
increasing the length of the Kagome truss.

A study of the C,C, parameters shows that if the
sandwich panel is under a bending load, to reduce
the weight for different lengths of sandwich, it is
better to change the truss diameter than the panel
thickness. Note that this recommendation is reversed
under a tension load.

By considering Figure 11 for optimization of a
sandwich panel with a pseudo-Kagome core truss,
we find that all sandwich panels with pseudo-
Kagome core trusses tend toward Kagome truss
behavior in the optimization process. This means that

the best situation occurs when we have 2 _ 3
n

Parameters Introduction

L

E

PR

dens

n,

Md

Length of structure
Yang module
Poisson ratio
Density

Safety factor of truss
Safety factor of shell

Displacement maximum
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