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Enhancing Modularity-Based Graph Clustering
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Abstract: Graph clustering is defined as grouping the vertices of a given input graph into clusters. This article
proposes a Two-Phase Modularity-Based Graph Clustering (2-PMGC) algorithm based on modularity
optimization. The algorithm consists mainly of two steps; namely, coarsening and refinement. The coarsening
phase takes the original graph as input and produces levels of coarsen graphs. The second phase starts with
the coarsest graph resulting from the previous phase and enhances clustering by further moving the vertices
of each coarsen level between clusters. Our algorithm is evaluated for 16 real-world networks, where an obvious
increase in modularity is achieved by the proposed algorithm.
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INTRODUCTION

Graph clustering (GC) is defined as the process of
separating an input graph into sub-graphs called clusters.
Graph clustering algorithms have gained much attention
recently, in various areas, such as data mining, statistics,
biology and computer networks. The problem of
communities’ detection can be modelled as a graph
clustering process, where vertices correspond to
individual items, edges describe relationships and clusters
correspond to communities [1].

To evaluate the goodness of clustering algorithms, an
objective function must be determined. Modularity is
a benefit function which was first introduced by Newman
and Girvan [2]. It is based on the idea that a graph has
community structure if it is not a random graph. In random
graphs, every two vertices have the same probability to
be adjacent [3]. Modularity is defined as follows [4].
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is the adjacency matrix, is the total number of edges of

the graph and represents the expected number of edges
between vertices and in the null model. 8(c; is a function
defined as:
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The choice of the null model has several possibilities,
in the standard null model, the probability that vertex with

degree can be connected to a vertex with degree can be
calculated easily [3]. The probability to choose randomly
an edge incident with vertex is k;, since there are edges
incident with out of a total of.

Then, the probability of forming an edge between and
is [. The expected number is P, = 2m p, p; = kk,. The
modularity of a graph can be calculated as follows.
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The modularity is not only used as a quality function
to clustering, but it is used in the analysis of networks or
graphs such as computer or social networks. It has shown
its relevance in solving the problem of extracting dense
clusters in a graph. Modularity optimization is a problem
that is computationally hard [2]. Therefore, approximation
algorithms are necessary when dealing with large
networks.

Depending on desirable structure of the clusters,
graph clustering algorithms can be classified into two
paradigms; namely, hierarchical and flat clustering [4].
Hierarchical clustering produces multi-level clustering,
where the resulting clusters can be modeled as a tree
called Dendrogram. This is accomplished by iterating
partitions, in which the root cluster almost contains the
whole vertices and the leaf clusters contains at least one
vertex. Flat clustering generates sub-graphs; each
contains vertex subset from the whole graph. When the
final number of clusters is known beforehand, flat
clustering is more efficient.
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Fig. 1: Agglomerative Clustering

Furthermore, the Hierarchical Graph Clustering Can Be
Classified Into:

Top-down (divisive approach) - this approach
iteratively partitions the graph into clusters. Each
level is typically divided into two sets or more. There
are various techniques to split the graph, such as
Cuts, Spectral methods, Betweenness, Markov chains
and Random walks.

Bottom-up (agglomerative approach) - this approach
assigns each vertex to a cluster and repeatedly
merges pairs of clusters till agglomerative tree is
formed [5]. Most merging criterion is based on greedy
optimization of the objective function. Fig. 1 shows a
set of vertices and the corresponding dendrogram.

Graph clustering generates application-specific
output. In the field of social networks, clustering helps in
the of analysis social interactions between people. Han
and Yan proposed fuzzy clustering for social annotations
which allows users to annotate web resources more
easily, openly and freely than do taxonomies and
ontologies [6]. Lee et al. used text-mining methodology to
explore the development and features of digital library
represented using graph [7]. In the field of bioinformatics,
graph clustering is applied to classify the gene expression
and protein interactions.

Related Work: The problem of graph clustering has been
studied in the last decades. Consequently, the literature
is rich with several approaches for measuring quality of
clustering. Modularity is considered the most used and
best-known quality function so far [3]. In the following
subsection, a number of different graph clustering
methods is presented.

Modularity-based Graph Clustering Algorithms:
Newman proposed a greedy modularity-based graph
clustering algorithm to maximize the modularity [8]. It is an
agglomerative hierarchical method, which starts with a
number of clusters. Iteratively, the number of clusters is
decreased by one by merging two clusters that are
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connected by an edge in the original graph such that the
modularity increases.

Clauset, et al. [9] proposed a bottom-up greedy
optimization algorithm to maximize the modularity of graph
clustering. The algorithm starts with singleton clusters in
the input graph. Then, it finds the pair of clusters with the
maximum modularity gain and then merges them. During
the merge process, the algorithm updates the modularity
gain values that correspond to any neighboring clusters
of the newly merged ones.

A multi-step greedy (MSG) algorithm by Schuetz and
Caflish [10] was proposed. It depends on the greedy
merging of more than one cluster pair at each iteration.
The motive of this approach is to resolve the problem of
premature concentration into few large clusters. It is
found by Noak and Rotta [11] that this multi-step
coarsening algorithm is no improvement over simple
single-step coarsening for the modularity criteria. They
utilized a refinement algorithm, in which single vertices are
moved to the neighbouring cluster that yields the
maximum increase in modularity [12].

Blondel, et al. [13] used a local search heuristic
method to optimize the modularity problem of graph

clustering. The  basic method consists of a
sequence of two iterative steps. The first step
consists of sequentially moving the vertex to a

cluster where the modularity gain is maximized. In the
second step, a new graph is formed from the obtained
clusters in the first step. The two steps are sequentially
repeated and the process stops when there is no
modularity gain. The drawback of this algorithm is that the
accuracy of the resulting clusters is tested only on the
final partition.

Extremal optimization is a heuristic search proposed
to achieve accuracy comparable with simulated annealing.
This technique was used for modularity optimization by
Duch and Arenas [14]. The algorithm starts with a random
bi-partition of the network into two communities. Then, it
moves vertices with the lowest fitness from one cluster to
the other until no further increase in modularity is
possible. The process is repeated recursively for each
resulting partition.
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Fig. 2: The Block Diagram of the 2-PMGC

Input: Original Graph

//coarsening phase

coarsestGraph 4 Coarsening (originalGraph);

init Cluster 4= coarsest Graph;

//Refinement Phase

Clusters #= Uncoarsen And Refinement (initCluster);

Fig. 3: The 2-PMGC Algorithm

Some algorithms that use the spectral properties for
the graph to extract the clusters were proposed. This is
achieved by using a mathematical representation of the
graph based on computing the Eigen values or the
Laplacian transform of the adjacency matrix of the graph
[15]. A spectral clustering algorithm by White and Smyth
was proposed to find the relationship between network
communities and vector clusters, by first embedding the
graph into a Euclidean space and then clustering the
vectors by applying K-means clustering algorithm [16].
The main drawback of spectral methods is that they are
computationally expensive for large graphs.

Other Graph clustering Algorithms: Van Dongen
proposed a random-walk Markov-based clustering
algorithm [17]. The algorithm converts the input graph
into a Markov graph and then random walk operations are
applied to eliminate the inter-cluster interactions. Markov
chain is a stochastic process which produces a transition
matrix that contains the probabilities of moving from the
current state to another state. Newman and Girvan
algorithm [2] is a divisive clustering technique based on
the concept of edge betweenness centrality, which is a
measure of the proportion of shortest paths between
nodes that pass through a particular link. The algorithm
was shown to perform well on a variety of graph
clustering tasks, but its complexity can severely limit its
applicability.

Graph clustering algorithms are categorized
depending on the topological structure of the resulting
clusters. However, most of them ignore the properties of
the vertices. Zhou, et al. proposes a novel graph
clustering algorithm, which partitions the graph into

986

homogeneous clusters (the vertices of one cluster have
the same attributes) using a unified distance measure [18].
Saha and Mitra [19] introduced an incremental graph
clustering algorithm, which considers the dynamicity of
the input graph. The algorithm can handle the topological
changes of the input graph (representing a network). It
uses the min-cut as the quality measure of the resulting
clusters [20].

Graph Partitioning: Hierarchical graph clustering can be
considered as a sibling for multilevel graph partitioning
[15]. It consists of three phases: coarsening, partitioning
and refinement (or uncoarsening). Kernighan and Lin
proposed one of the earliest methods to solve the problem
of partitioning electronic circuits onto boards [12]. The
algorithm was also used to optimize the modularity
function representing the difference between the number
of edges inside the clusters and the number of edges
lying between them. The algorithm iteratively performs the
globally best vertex move such that each vertex is moved
once without the restriction that the move should increase
modularity [11]. The run-time and storage requirements
increase rapidly with the number of clusters [3]. Fiduccia
and Mattheyses proposed a linear-time iterative heuristic
algorithm which starts with a possibly random solution
and changes the solution by a sequence of moves, which
are organized by multiple passes [21].

Proposed Graph Clustering Algorithm: Modularity is
one of the most widely used quality measures for graph
clustering. In this section, a 2-Phase Modularity-based
Graph Clustering algorithm (2-PMGC) is introduced to
enhance the modularity of graph clustering. The algorithm
consists of two phases; namely, coarsening and
refinement. Fig. 2 shows the block diagram of the basic
operations of the 2-PMGC algorithm. In the first phase,
the Louvain method [13] is adopted. This coarsening
phase takes the original graph as an input and produces
levels of coarsen graphs. The last level of coarsen graphs
(coarsest) is used as the initial clustering for the following
refinement phase. The second phase starts with initial
solution and tries to find a better one in terms of
modularity by further moving the vertices of each level
between clusters. Further description for the algorithm is
shown in Fig. 3.

A refining phase usually starts with initial solution
and attempts to find a better one. During the coarsening
phase, a sequence of smaller graphs is produced. Each
graph has fewer vertices than the previous ones. Thus,
the input graph G, is transformed into levels of smaller
graphs G,, G;, G,..., G,; i.e. |G,(V)| > |G(V)| > ...> |G4V)|. In
this phase, a set vertices from a graph G, can be combined
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together to form a single vertex in the next level graph G,,,.
To start the refinement phase, an initial solution is
needed. This initial solution is the clustering found in the
previous coarsening phase. In this case, the coarsest
graph is selected. In the uncoarsening phase, the
clustering of G,, is projected back to the original graph G,
by going through intermediate graph levels G, , Gm.
,....G,. At each level of uncoarsening, some finer
optimizations are applied on the graph. In general,
refinement algorithms move vertices between clusters, in
order to improve the quality of the clustering. The
technique for moving vertices is based on the Fiduccia-
Mattheyses (FM) refinement algorithm [21].

The modularity as defined in Eq. (3) is a scalar value
between -1 and 1, which measures the density of links
inside the clusters as compared to lines between clusters.

A simpler version of the above equation is used to
calculate the modularity of the graph. To derive the
equation of the modularity, the following steps are made:
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The contributions to the sum come just in case the
vertex pairs i and j belong to same cluster. The sum over
the vertex pairs can be rewritten as follows:
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Where:

is the sum of internal edges of each cluster and
is the sum of the edges incident to the vertices in
cluster c.

Initially, the graph consists of singleton clusters
as many as the number of individual vertices. The
sum of internal edges of each cluster is 0. Thus, the first
part of the equation can be ignored and the initial
modularity value would be negative. Therefore, the
modularity can be calculated using the simpler formula
given below:

a2

Q0=_Z 2

c=1 4L
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Coarsening Phase: In the 2-PMGC algorithm, the Louvain
coarsening phase of [13] is applied. Additional
modifications are implemented to enable the refinement
phase to be executed. The main purpose of coarsening
is to produce smaller graphs than the consequent one.
The used coarsening algorithm consists of two main
steps; namely, moving vertices and merging. The first
step moves a vertex from its current cluster and merges it
with a neighbouring one. The decision of moving
and merging depends on the modularity gain increase.
The second step produces a graph structure depending
on the changes made by the vertex moves in the previous
step. The description of the coarsening phase is shown in
Fig. 4. The main functionality of this step is contracting
where the algorithm rebuilds the graph into a coarsen one.
Each group of vertices, which are assigned to the same
cluster, is contracted into a single vertex in the next level
graph. To calculate the merging modularity gain, suppose
cluster C and D which is merged to form a new cluster E.
Once cluster C is moved into cluster D to form the new
cluster E, the whole modularity is altered.
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1 Graph Coarsening(Graph originalGraph){

2 //Initializations

3 level=0; //initialize the levels number

5 coarsedGraph=copyGraph(originalGraph);

6 Ncur=originalGraph.size(); //get the graph size

7  Qnew=modularity(); //compute the modularity

8 Repeat

9 Lmax=t++level;

10 GraphLevels[level[#=addGraph(coarsedGraph); //add the original graph
11 C#={Cvi|vi G(coarsedGraph)}; //assing each vertex to a different cluster
12 Repeat

13 Qcur=Qnew;

14 for v; coarsedGraph(V) do

15 remove vi from its current cluster Cvi

16 forv; Ny,

17 Amodularity_gain(v,,Cv));

18 end for

19 select Cv; having (maxAQ,> 0)

20 insert v, to Cv;

21 end for

22 Qnew=modularity();

23 untill (Qnew=Qcur OR no membership change) //no imporvement in modularity
24 V' & {v, Cv, coarsed Graph(V)};

25 E' € {eje;, v,C,v;Cjand C, Cj};

26 W' & {w;| X, if v, C;and v; C;};

27 coarsed Graph ¢= Graph (V',E',W");

28 Nnew=coarsed Graph. size();

30 if (Nnew=Ncur) break;

31 return GraphLevels[Lmax]; / / return the coarsest graph

32 }//end of coarsening phase

Fig. 4: Coarsening Phase Algorithm
The modularity gain can be calculated as follows:
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The coarsening algorithm initially places each vertex
of the input graph into a different cluster. Consequently,
there are as many singleton clusters as vertices in the
input graph. Two main steps of the algorithm are repeated
iteratively; namely, greedy vertex moving and contracting.
The modularity gain of removing vertex v; from its own
cluster and merging with one of the neighboring vertices’
clusters is computed using the equation of merging
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new Cluster €= init Cluster;

For i from Imax-1 to 1 do

End for
return newClustering;

0NN N AW~

Clusters Uncoarsen And Refinement (Clustering initCluster)
Imax=GetGraphNum(); //return the number of coarsening phase levels

newClustering 4= Uncoarsen (Graph Levels [i], Graph Levels [i-1], new Cluster);
new Clustering = Refine (Graph Levels [i-1], new Cluster);

Fig. 5: Refinement Phase Algorithm

modularity computed in the previous steps. The
neighboring cluster associated with the highest positive
modularity gain is selected and then the vertex is inserted
into it. It is important to mention that each vertex is
considered a singleton cluster even if it has been merged
into another one in the previous iteration. After iterating
over the vertices, the modularity of the resulting
clustering is computed. The operation of moving vertices
is applied repeatedly for all vertices as long as there is no
individual move that can improve the modularity. Hence,
the first step ends when a local maxima of the modularity
is attained.

In the second contracting step, the weights of
the edges between the new vertices are given by
the sum of the weights of the edges between the
vertices in the two corresponding clusters [22]. The
internal edges between the vertices in the same cluster are
regarded to be self-edges of the new vertex. Each
execution of the two steps produces a one-level
contracted graph. Thus, the intermediate results of the
coarsening phase are recorded as coarsening levels. The
number of the coarsen graphs is determined by the
number of passes. Each coarsening level represents a
graph in which vertices are the clusters resulting from the
movement of vertices.

Refinement Phase: In order to enhance the modularity of
the clustering resulting from the coarsening phase, the
Refinement phase is needed which consists of two main
steps; namely, uncoarsening and vertex moving between
clusters. In the uncoarsening step, each graph level is
successively projected to the previous finer level graph.
At each projecting level, the FM algorithm of vertex
moving is used in a greedy manner. The description of the
algorithm is given in Fig. 5. The modularity gain of
moving a vertex from one cluster to another in the
refinement phase is calculated. Let vertex v move from its
current cluster C to another cluster D. This move is taken
according to the modularity gain score.
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The following equations show how the increase in
modularity can be computed.
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Most of the coarsening algorithms have the drawback
that the contracting decisions are based only on local
information. Therefore, many wrong merging steps are
made. Fig. 6 shows the detailed steps of the uncoarsening
process. The refinement scheme becomes more powerful
since it deals with smaller sub-graphs. In addition, the
movement of a single vertex across clusters in a coarsen
graph can lead to movement of a large number of related
vertices in the original graph.
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for each ck curr Clustering
for each v, curr Graph
v; = finer Graph. get Vertex (vi)
set Umoved (v;);
ck. add Vertex (v;);
End fo
rck. delete Vertex (v,);
9 End for
10 return currClustering

1
2
3
4
5
6
7
8

Clusters Uncoarsen (Graph currGraph, Graph finerGraph, Clustering currCluster){

Fig. 6: Uncoarsening Algorithm

Fig. 7: The etwork network example

Example: To explain the methodology of the 2-PMGC
algorithm, a sample network called etwork introduced by
Blondel, et al. [13] is illustrated in Fig. 7. The etwork
network consists of 16 vertices and 28 edges. The default
value of edge weight is 1. At the beginning, each vertex of
the input graph is assigned into a different cluster, so
there are 16 singleton clusters. The coarsening phase
repeatedly iterates over the vertices of the graph to find
the best move of each vertex. Then, it contracts the graph
into a smaller one. The local maximum is reached after four
iterations. During the merging step, each group of vertices
belonging to the same cluster merged into a new vertex.
The internal edges of the cluster are represented as self-
edge of the new vertex.
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The resulting graph consists of 4 vertices and the
network total weight remains the same as that of the
original graph which equals 56. The algorithm restarts
again considering the resulting graph from the first level
as the input graph to the next level. Then, the refinement
phase is executed, where an initial cluster must be defined
by assigning each vertex in the last level of the graph
resulting from the previous phase to a cluster. Fig. 8
displays the execution of the 2-PMGC algorithm for the
etwork network.

Experimental Results: In this section, we experimentally
evaluate the proposed 2-PMGC algorithm. The benchmark
graphs used in the experiments are briefly explained.

The Benchmark Graphs: In our experiments, we use a
selected set of real-world benchmark graphs representing
various major domains. These graphs vary greatly in their
characteristics and sizes. The identified clusters in these
graphs vary greatly from one field of science to another.
The testing graph set includes social networks, biological
neural networks, protein interaction networks,
software...etc. Real-world graphs are characterized by
their heterogeneous distribution of vertex degree, where
many of them follow power-law distributions. It is widely
recognized that a good benchmark must have a skewed
degree distribution [23] while artificially generated graphs
are structurally limited and their generation models
determine the vertex degree distribution producing a
binomial distribution [11]. Table 1 shows the basic
statistics of our benchmark graphs set. For each graph,
the number of vertices and edges, the total weight of
edges and the type of the graph are listed. The graph size
varies from a few to 25K vertices and 91K edges.
Moreover, the edge weight varies from 78 to 125K. A brief
description of each graph used in the tests is as follows.

Zachary's Karate Club: It is a social network of
friendships between 34 members of a Karate club at a US
university, compiled by Zachary [24, 25]. Because of a
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Fig. 8: The 2-PMGC algorithm execution for the etwork
Table 1: Benchmark Test Graphs
Netwrok Vertices Edges Edge Weight Type
Karate 34 78 78.0 social
Grass_web 75 113 113.0 biology
Lesmis 77 254 820.0 social
Afootball 115 613 616.0 social
Jazz 198 2742 5484.0 citation
A01_main 249 635 642.0 citation
Email 1133 5451 10902.0 social
NDyeast_main 1458 1993 1993.0 biology
Java 1538 7817 8032.0 software
DutchElite_main 3621 4310 4311.0 economy
California_main 5925 15770 15946.0 web
Erdos02 6927 11850 11850.0 co-author
Arxiv 9377 48214 48214.0 citation
PGPgiantcompo 10680 24316 24340.0 social
Foldoc 13356 91471 125207.0 linguistics
DIC28 main 24831 71014 71014.0 linguistics

conflict between two members in the club, one of the
coaches left the original karate club. A new club is formed
with about half of the members. This graph is considered
one of the most common tests used in social sciences.

Grass_web: In this biology network, the parasitoid
assemblages associated with 18 species of chalcid wasps
feeding on 10 grass species were sampled quantitatively
between 1980 and 1992 at 24 sites in Wales and England
to examine food web structure [26]. The size and
composition of the parasitoid complexes and structures of
the local communities is two. The complete food web
included 87 species organized into five levels [27].
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Lesmis: This social graph presents the co-appearances of
characters in Victor Hugo's novel (Les Miserables).
The vertices represent characters and edges connect any
pair of characters that appear in the same chapter of the
book [25]. The values on the edges are the number of
such co-appearances [28].

Football: Football is a real-world social graph for the
games schedule of Division I of the United States college
football for the 2000 season [29, 30]. The 115 teams are
grouped into conferences of 8-12 teams. On average,
seven intra-conferences and four inter-conference games
are played and inter-conference games between
geographically close teams are more likely.
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Jazz: It is a network of 198 Jazz musicians compiled by
Geisler and Danon [31]. Such graphs are interesting for
the Social Sciences as Jazz musicians very often work
together in many different small groups. This graph has
become popular for the comparison of clustering methods
[32].

A01_main: Graph A is a graph drawing self-referenced
graph [33]. There is a node for every paper in the
proceedings of GD94 to GD2000 and an edge, if a paper
refers to another GD paper [11].

Email: The graph contains 1133 users of the Univeristy
Rovira i Virgili,Tarragona e-mail system, including faculty,
researchers, technicians, managers, administrators and
graduate students [22]. Two persons are connected by an
edge if both exchanged e-mails with each other.

Ndyeast_main: It is a biological network of 1458 vertices
which presents Protein Interaction Network for Yeast [33].
Edges are links between two proteins.

Java: It is one of the produced graphs form Graph
Drawing Context (GDC) in 2006 [33]. This graph
ensembles the Java compile-time dependency. It is
classified as a software graph of 1538 vertices.

DutchElite_main: The graph consists of data on the
administrative elite in The Netherlands, April 2006 [33].
For each organization, the principal administrative body
or bodies have been selected. Bodies include boards of
directors, supervisory and advisory boards. In the case of
regional government, individual officials were also
included, notably Royal Commissioners and the mayors
of the 25 largest Dutch cities. The selected bodies’
members around the beginning of 2006 were included in
the dataset but data collection was restricted to people of
Dutch nationality. It is considered as an economical graph
of 3621 vertices.

California_main: This graph was constructed by
expanding a 200-page response set to a search engine
query 'California’ [33]. It is considered a web graph of 5925
vertices.

Erdos02: Erdos02 is the year 2002 version of the
collaboration network around Erdos [33]. The vertices
represent authors and the edges connect co-authors.
Only authors with a co-author distance from Erdos up to
two are included.
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Arxiv: It is a graph that presents connection between
9000 scientific papers and their citations [34]. This graph
has 9377 vertices and 48214 edges. It is classified as a
citation application graph.

PGPgiantcompo: It is a graph of giant component of the
network of users of the Pretty-Good-Privacy algorithm for
secure information interchange [22]. The component
contains 10680 vertices. Edges connect users trusting
each other.

Foldoc: It is a linguistic graph of 13356 vertices [33]. It
presents an arc (X, Y) from term X to term Y exists in the
network if and only if in the FOLDOC dictionary the term
Y is used to describe the meaning of term X.

DIC28 main: It is a linguistic graph which represents a
subset of a dictionary [33] consisting of 24831 vertices. It
is a set of word association norms showing the counts of
word association as collected from subjects. The link
established between the stimulus and the response is not
semantically labeled and can only be regarded as an
association.

Clustering Algorithms: To evaluate the proposed
algorithm, the following clustering algorithms are used in
our experiments.

Blondel Algorithm: it uses local search heuristic to
move vertices between clusters, with greedy search.
When local optimum is reached, the graph is
coarsened and the method is repeated [13].

Clauset Algorithm: It is the first published algorithm
for modularity maximization. It uses fast greedy graph
coarsening with modularity increase as merge
criterion [9].

MSG-Greedy Algorithm: This is a coarsening
algorithm which depends on merging cluster pairs to
increase the modularity [10].

MSG-VM Algorithm: This algorithm extends the
MSG-Greedy algorithm by combining the coarsening
phase with a refinement procedure in which single
vertices are moved to the neighbouring clusters that
yield increase of modularity [10].

The motivation for selecting these algorithms is that
they adopt the greedy approach to optimize modularity.
This choice presents a sensible evaluation for the
proposed 2-PMGC algorithm due to the fact that it uses
the greedy coarsening method by Blondel and aims to
achieve higher modularity via the additional refinement
phase.
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RESULTS AND DISCUSSIONS

This section discusses our experimental results of
comparing the 2-PMGC algorithm with four existing
algorithms with respect to the 16 real-world networks
presented in section 4.1. The modularity of the generated
clusters by the algorithms for each network is used to
evaluate the effectiveness of each algorithm in finding the
clusters. Higher modularity indicates more effective
algorithm. Furthermore, the runtime requirements of the
algorithms are measured (runtime requirements exclude
the time needed to read the input graph).

The algorithms are implemented in C++ and all
experiments are conducted on a 2 GHz Intel Core 2 Duo
processor with 3 GB main memory. In this evaluation, we
have not depended on the published values of the other
algorithms as a basis of evaluation. Instead, the
experiments of the algorithms with respect to the
benchmark networks are conducted in the same
environment to secure objective evaluation.

Fig. 9 displays the modularity values obtained for the
clusters generated by the five algorithms with respect to
the 16 networks. It can be clearly noticed that the Clauset
algorithm consistently generates the worst modularity
values for all input graphs. This is due to the fact that
Clauset tends to quickly find large clusters at the expense
of the small ones, which often yields poor values of
modularity. The Blondel algorithm outperforms both
MSG-Greedy and MSG-VM algorithms, except for the
following graphs: afootball, java, PGP and foldoc, for
which MSG-VM has higher values of modularity. The 2-
PMGC algorithm clearly outperforms all other four
algorithms for the benchmark tests as it generates clusters
with higher modularity values. For instance, the 2-PMGC
algorithm enhanced the modularity by at least 43.32% and
38.5% with respect to the Jazz and Lemis graphs,
respectively.

As the main purpose of our algorithm is to enhance
the modularity of Blondel’s algorithm by implementing
additional refinement phase, Fig. 10 clearly shows the
improvement of modularity for each graph. One possible
reason for the higher values of modularity for clusters
generated by the 2-PMGC algorithm is due to the fact that
it uses Blondel’s coarsening phase, which has a multi-
level nature. This provides decomposition for the graph
into clusters for different levels, which helps in avoiding
the resolution limit problem of modularity. It is a well-
known problem for modularity optimization that it fails to
identify clusters smaller than a certain scale [3]. However,
there are some cases when the modularity improvement
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was not significant, such as the Duch graph. In this case,
the 2-PMGC algorithm increases the modularity value of
Blondel’s algorithm from 0.833496 to 0.842884.
Furthermore, when karate club graph is used as the input
graph, the modularity values of the clusters generated by
all the algorithms are close. Nevertheless, the 2-PMGC
algorithm has the highest values of modularity for all the
graph sets.

It is observed that the performance of some
algorithms is not the same for all graphs. Furthermore, the
proposed algorithm enhancement to Blondel’s modularity
is not the same for the various graphs. Instead, it varies
from slight improvement to noticeable one. All the
presented algorithms are heuristics that search for good
clustering using local information. This search will most
likely be stuck in some kind of local optimum. The
following are possible reasons for such variety in results.

*  Modularity is always computed from the initial graph
topology and then successive operations on the
obtained intermediate clusters are conducted. It is
possible that at some iteration during -clusters
extraction for one graph that modularity cannot
increase anymore and the algorithm stops. This
reason could be checked or possibly avoided by
introducing some randomization in both algorithms
and comparing the best clustering after a number of
tries.

¢ There could be some structural properties of the
input graph, which can serve one algorithm better
than another one. A way to check this assumption is
by guessing which property is used and generating
many graphs with and without this property. If it is
correct, there will be a correlation between clustering
success and the presence of this property.
Unfortunately, generating graphs is not that easy
and needs to reflect the real-world graphs. Another
possibility is taking real-world graphs and measuring
how much the property is present in each one.

The use of coarsening technique reduces the effect
of resolution-limit problem, which the other algorithms
face. The first pass of the adopted coarsening phase
involves moving single vertices from one cluster to
another. Consequently, the probability that two distinct
clusters can be merged by moving single vertices is low.
These clusters may possibly be merged in later passes
after groups of nodes have been aggregated. The iterative
refinement at each uncoarsening level is able to improve
significantly the clustering modularity equality because it
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Fig. 10: 2-PMGC modularity improvement versus Blondel’s algorithm due to the additional refinement phase.

moves successively smaller groups of vertices between
the different clusters, unlike the other refinement
technique used by MSG-VM, which only moves
individual vertices that could easily be stuck in
suboptimal clustering [11].

Fig. 11 shows the run-time requirements for all
algorithms for the benchmark graphs (the log scale
is used in Y-axis for convenience). It can be seen
from the figure that more runtime is required for
graphs with larger (|V|+E[) value. Besides, there is a
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slight difference in runtime between the 2-PMGC
and Blondel’s algorithm. This increase in time is
expected due to the additional refinement phase of the 2-
PMGC algorithm. This technique is considerable cheaper
than globally finding the best vertex move as in
Kernighan-Lin, which extends the complete greedy
refinement that has been adopted by the MSG algorithm.
It has been shown that the refinement on multiple
coarsening levels does not significantly increase the
required runtime [11].
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CONCLUSIONS

It is observed from the different experiments that the
proposed 2-PMGC algorithm clearly performs better in
terms of modularity. The vertex move heuristic used in the
coarsening phase has better performance than the
merging technique. The Clauset algorithm discovers the
large clusters at the expense of small ones, which leads to
generating the worst modularity values. The use of the
refinement phase in the 2-PMGC algorithm brings about
an obvious improvement in modularity compared to
Blondel’s algorithm. The proposed 2-PMGC and MSG
algorithms use the refinement phase to improve the
modularity quality function of the generated clusters. The
2-PMGC algorithm has a remarkable enhancement in
modularity compared to Blondel’s algorithm at the
expense of a slight increase in run-time requirements. For
the benchmark tests, the MSG-VM algorithm generates
higher values of modularity than the MSG-Greedy
algorithm due to the use of the refinement phase in
MSG-VM.
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