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Abstract: In this paper, an application of Homotopy Analysis Method (HAM) is applied to solve the 
equation governing the unsteady flow of a polytropic gas. Comparison are made between the Adomian 
decomposition method and homotopy analysis method. The results reveal that the homotopy analysis 
method is very effective and simp le and gives the exact solution.
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INTRODUCTION

In 1992, Liao [1] employed the basic ideas of the 
homotopy in topology to propose a general analytic 
method for linear and nonlinear problems, namely
Homotopy Analysis Method (HAM) [2-4]. Based on 
homotopy of topology, the validity of the HAM is 
independent of whether or not there exist small
prameters in the considered equation. Therefore, the 
HAM can overcome the foregoing restrictions and
limitations of perturbation techniques. This method has 
been successfully applied to solve many types of
nonlinear problems. In this paper we prove theorem of 
Convergence of homotopy analysis method and apply 
this method to solve the equation governing the
unsteady flow of a polytropic gas.

Basic idea of HAM: We consider the following
differential equation

N[u( )] 0τ = (1)

where N is a nonlinear operator, τ denotes independent 
variable, u(τ) is an unknown function, respectively.
function, respectively. For simplicity, we ignore all
boundary or initial conditions, which can be treated in 
the similar way. By means of generalizing the
traditional  homotopy  method,  Liao [5] construct the 
so-called zero-order deformation equation

0(1 p)L[ (r,t;p) u (r,t)] p H(r,t)N[ (r,t;p)]− φ − = φ (2)

where p∈[0,1] is the embedding parameter, 0≠  is a 
nonzero auxiliary parameter, H(τ)≠0 is an auxiliary

function, u0(τ) is an initial guess of u(τ), φ(r, p) is a 
unknown function and L is an auxiliary linear operator 
with the property

L[f( )] 0τ = where ƒ(r) = 0 (3)

It is important, that one has great freedom to 
choose   auxiliary  things  in  HAM.  Obviously,  when 
p = 0 and p = 1, it holds

0( ;0) u ( ) , ( ;1) u( )φ τ = τ φ τ = τ (4)

respectively. Thus, as p increases from 0 to 1, the
solution φ(r; p) varies from the initial gusse u0(τ) to the
solution u(τ). Expanding φ(r; p) in Taylor series with 
respect to p, we have

m
0 m

m 1

( ;p) u ( ) u ( )p
+∞

=

φ τ = τ + τ∑ (5)

where
m

m p 0m
1 ( ;p)u ( ) |

m! p =
∂ φ ττ =
∂

(6)

If the auxiliary linear operator, the auxiliary
parameter h and the auxiliary function are so properly 
chosen, the series (5) convergent at p =1, then we have

0 m
m 1

u( ) u ( ) u ( )
+∞

=

τ = τ + τ∑ (7)

which must be one of solutions of original nonlinear 
equation,  as  proved  by  [5]. As  h =-1 and H(τ) = 1
Eq. (2) becomes
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0(1 p)L[ ( ; p) u ( )] pN[ ( ; p)] 0− φ τ − τ + φ τ = (8)

which is used mostly in the homotopy perturbation 
method [6], where as the solution obtained directly, 
without using Taylor series [7]. According to the
definition (6), the governing equation can be deduced 
from the zero-order deformation equation (2). Define 
the vector

{ }n 0 1 nu u ,u , . . . ,u
→

=

Differentiating equation (2) m times with respect to 
the embedding parameter p and finally dividing them 
by m!, we have the so-called m-th order deformation
equation

m m m 1 m m 1L[u u ] hH( )R (u )
→

− −− χ = τ (9)
where

m 1

m m 1 p 0m 1

1 N[ ( ;p)]
R (u ) |

(m 1)! p

−→

− =−

∂ φ τ
=

− ∂
(10)

and
0, m 1

m
1, m 1.

≤
χ =  >

(11)

It should be emphasized that um(τ) for m≥1 is 
governed by the linear equation (9) under the linear 
boundary condition that come from original problem, 
which can be easily solved by symbolic computation
software such as Matlab. If equation (1) admist unique 
solution, then this method will produse the unique 
solution. If equation (1) dos not possess unique
solution, the HAM will give a solution among many 
other (possible) solution.

CONVERGENCE OF HAM

In this section, we will prove that, as long as the 
solution series (7) given by the homotopy analysis 
method is  convergent, it must be the solution of the 
considered nonlinear problem.

Theorem 2.1: As long as the series

0 m
m 1

u (t) u (t)
+∞

=

+∑

is convergent, where um(t) is governed by the high-
order deformation equation (9) under the definitions
(10) and (11), it must be a solution of Equation (1). 
proof. Let

0 m
m 1

s(t) u ( t ) u (t)
+∞

=

= + ∑

denote the convergent series. Using (9) and (11), we 
have

m 1

m 1m m m m 1
m 1 m 1

m m ( t )
m 1 m 1

2 m
m 1

2 0

hH(t) R (u ) L u (t) u (t)

L u (t) u

L (1 ) u (t)

L (1 )(s(t) u (t))

−

+∞ +∞

− −
= =

+∞ +∞

= =

+∞

=

= − χ  

 = − χ 
 
 

= −χ 
 

= − χ −  

∑ ∑

∑ ∑

∑



which gives, since h≠0 and H(r)≠0 from (3),

m 1m
m 1

R (u ) 0
+∞

−

=

=∑


(12)

On the other side, we have according to the
definition (10), that

m 1

m 1m q 0m 1
m 1 m 1

1 N[ (t;q)]R (u ) |
(m 1)! q

−+∞ +∞

− =−
= =

∂ φ=
− ∂∑ ∑


(13)

In general, φ(r; p) does not satisfy the original 
nonlinear equation (1). Let

(t;q) N[ (t;q)]ε = φ

denote the residual error of Equation (1). Clearly,

(t;q) 0ε =

Corresponds to the exact solution of the original 
equation (1). According to the above definition, the 
Maclaurin series of the residual error φ(t; p) about the 
embedding parameter q is

m m

q 0 q 0m m
m 0 m 0

1 (t;q) 1 N[ (t;q)]| |
m! q m! q

+∞ +∞

= =
= =

∂ ε ∂ φ=
∂ ∂∑ ∑

When q = 1, the above expression gives, using (13)

m

q 0m
1 (t;q)(t;q) | 0

m! q =
∂ εε = =
∂∑

This means, according to the definition of φ(t; p), 
that we gain the exact solution of the original equation
(1) when q. Thus, as long as the series
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0 m
m 1

u (t) u (t)
+∞

=

+∑

is convergent, it must be one solution of the original 
equation (1). This ends the proof.

APPLICATION

In order to assess the advantages and the accuracy 
of homotopy analysis method for solving nonlinear
systems, we will consider the following example.

Example: The equation governing the unsteady ow of a 
polytropic gas in two dimensions is given by [8-10] as 
follows

x
t x y

y
t x y

t x y x y

t x y x y

pu uu vu 0

p
v uv vv 0

u v (u v ) 0

p up vp (u v ) 0

+ + + =
ρ

+ + + =
ρ

ρ + ρ + ρ + ρ + =

+ + + γ + =

(14)

where ρ is the density, p the pressure, u and v the 
velocity components in the x and y directions,
respectively and the adiabatic index γ is the ratio of the 
specific heats. With the initial data:

x y

x y

x y

u(x,y,0) e
v(x,y,0) 1 e

(x,y,0) e
p(x,y,0) c

+

+

+

=

= − −

ρ =
=

(15)

Note that the selection of equations (15) that are 
obtained from [8] the fluid is incomp ressible and
invisid (no viscose). The exact solution of equations 
(15) is

x y t

x y t

x y t

u(x,y,0) e
v(x,y,0) 1 e

(x,y,0) e
p(x,y,0) c

+ +

+ +

+ +

=

= − −

ρ =
=

(16)

To solve the Eqs. (15) by means of homotopy 
analysis method, we choose the linear oprator

i
(x,y,t;p)

L [ (x,y,t;p)] , i 1,2,3,4
t

∂φ
φ = =

∂ (17)
with the property

iL[c] 0, i 1,2,3,4= =

where c are integral constant. The inverse operator L−1

is given by
t1

i 0
L ( ) ()dt, i 1,2,3,4− ⋅ = ⋅ =∫ (18)

Now we define a nonlinear operators as

3

1 1 1
1 1 2

4

xN
t x y

∂φ
∂φ ∂φ ∂φ ∂= + φ + φ +
∂ ∂ ∂ φ

3

2 2 2
2 1 2

4

yN
t x y

∂φ
∂φ ∂φ ∂φ ∂= + φ + φ +
∂ ∂ ∂ φ

4 4 4 1 2
3 1 2 4N ( )

t x y x y
∂φ ∂φ ∂φ ∂φ ∂φ

= + φ + φ + φ +
∂ ∂ ∂ ∂ ∂

3 3 3 1 2
4 1 2 3N ( )

t x y x y
∂φ ∂φ ∂φ ∂φ ∂φ

= + φ + φ +γφ +
∂ ∂ ∂ ∂ ∂

(19)

Thus, by the above definitions we obtain the mth-
order deformation equations

1 m m m 1 1 1 1,m

2 m m m 1 2 2 2 , m

3 m m m 1 3 3 3,m

4 m m m 4 4 4,m

L[u (x,y,t) u (x,y,t)] h H R

L [ v (x,y,t) v (x,y,t)] h H R
L [ (x,y,t) (x,y,t)] h H R

L [ p (x,y,t) p 1(x,y,t)] h H R

−

−

−

−

− χ =

− χ =

ρ −χ ρ =

− χ =

(20)

where

m 1 m 1 m 1i i i,m i,m m 1H H (x,y,t),R R (u ,v , , p )− − − −= = ρ
   

for i = 1,2,3,4 and

m 1
m 1 m 1 i m 1 i

1,m i i 1 x
i 0

m 1
m 1 m 1 i m 1 i

2,m i i 2 y
i 0

m 1
m 1 m 1 i m 1 i m 1 i

3,m i i i
i 0

m 1 i
i

m 1
4,m

u u uR u v A ( , p )
t x y

v v vR u v A ( ,p )
t x y

u
R (u v

t x y x
v )

y
pR (u

t

−
− − − − −

=

−
− − − − −

=

−
− − − − − − −

=

− −

−

 ∂ ∂ ∂= + + + ρ ∂ ∂ ∂ 
 ∂ ∂ ∂= + + + ρ ∂ ∂ ∂ 

∂ρ ∂ρ ∂ρ ∂
= + + + ρ

∂ ∂ ∂ ∂
∂+ ρ
∂

∂= +
∂

∑

∑

∑

i m 1
m 1 i m 1 i m 1 i

i i i
i 0

m 1 i
i

p p uv P
x y x

v
p )

y

= −
− − − − − −

=

− −

∂ ∂ ∂+ + γ
∂ ∂ ∂

∂
+ γ

∂

∑

where
0 1,x 1 0,y0x

1 x 2
0 0

0y 0 1,y 1 0,y
2 y 2

0 0

p ppA ( ,p )

p p p
A ( ,p )

ρ − ρ
ρ = +

ρ ρ
ρ − ρ

ρ = +
ρ ρ
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Now the solutions of the mth-order deformation 
equations (20)

1
m m m 1 1 1 1 1,m

1
m m m 1 2 2 2 2 , m

1
m m m 1 3 3 3 3,m

1
m m m 1 4 4 4 4,m

u (x,y,t) u (x,y,t) H h L [R ]

v (x,y,t) v (x,y,t) H h L [R ]

(x,y,t) (x,y,t) H h L [R ]

p (x,y,t) p (x,y,t) H h L [R ]

−
−

−
−

−
−

−
−

= χ +

= χ +

ρ = χ ρ +

= χ +

(21)

We start with an initial approximations

x y
0

x y
0

x y
0

0

u (x,y,t) e

v (x,y,t) 1 e

(x,y,t) e
p (x,y,t) c

+

+

+

=

= − −

ρ =

=

and by means of the above iteration formula (20) if 

i iH(x,y,t) 1,h 1= = −

for i = 1,2,3,4 we can obtain directly the other
components as

x y x y x y
1 1 1 1

2 2 2
x y x y x y

2 2 2 2

3 3 3
x y x y x y

3 3 3 3

t t tu e , v e , e , p 0
1! 1! 1!
t t tu e , v e , e ,p 0
2! 2! 2!
t t t

u e , v e , e , p 0
3! 3! 3!

+ + +

+ + +

+ + +

= = − ρ = =

= = − ρ = =

= = − ρ = =



Continuing the expansion to the last term gives the 
solution of(13) as

n
x y x y t

n 0

n
x y x y t

n 0
n

x y x y t x y t

n 0

t
u(x,y,t) e e

n!
t

v(x,y,t) 1 e 1 e
n!

t(x,y,t) e e e
n!

p(x,y,t) c

+∞
+ + +

=

+∞
+ + +

=

+∞
+ + + + +

=

= =

= − − = − −

ρ = = =

=

∑

∑

∑

which is exactly the same as obtained by Adomian 
decomp osition method [11].

CONCLUSION

In this paper, the HAM was used to obtain the 
exact solutions of the Equation Governing the Unsteady 
Flow of a Polytropic Gas. The comparison between the 
HAM and ADM was made and it was found that HAM 
is   more   effiective   than   ADM.   Hence,   it  may  be

concluded that this method is a powerful and an
efficient technique in finding the exact solutions for 
wide classes of problems. Furthermore, the advantage 
of this method is the fast convergence of the solutions 
by means of the auxiliary parameter h and the freedom 
of choosing h for HAM gives us more accuracy than 
ADM. It is also worth mentioning to this end that for 
the  example  considered,  we  have  shown  that  ADM
are special case of HAM. The computations associated 
with the example in this Letter were performed using 
Matlab 7.
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