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Application of Homotopy Perturbation Method and Differential Transformation
Method to Determine Displacement of a Damped System with Nonlinear Spring
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Abstract: In this paper, Differential Transformation Method (DTM) and He's homotopy perturbation method
(HPM) have been applied to determine the displacement of nonlinear oscillator problem with third order non

linearities. the concepts of Differential Transformation Method and He's homotopy perturbation method are
briefly introduced for applying these methods for solving problem. The results of DTM are compared with

HPM as analytical solution and exact solution to verify the accuracy of proposed method. The results reveal
that Differential Transformation method very effective and convenient in predicting the solution of such
problems. Finally, we analyze effect of physical parameter A (initial amplitude) in this problem.
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INTRODUCTION

This paper considers the following general nonlinear
oscillator equation [1]:

dx )]

m——+c—+kx+kx' =0
dt dt

Where m [kg] is mass, ¢ {k_g} is damping
sec
coefficient, k,

coefficients.

{N} and %, {Nj} are spring stiffness

m m
With Tmitial Conditions:

(2)

x(0)=4,7(0)=15

“dt

Where k, x’ is a nonlinear term and 4 is initial
amplitude There are many mechamical systems that
modeled by mass and spring. The development of
numerical techniques for solving nonlinear algebraic
equations 1s a subject of considerable interest. There are
many papers that deal with nonlinear algebraic equations.
Nonlinear oscillation systems are such phenomena that
mostly occurs nonlinearity. These systems are important

in engineering because many practical engimeering
components consist of vibrating systems that can be
modeled using oscillator systems. Generally, analysis of
actual engimeering problem mnvolves solution of nonlinear
differential equations. Except for a limited number, these
problems cannot be solved explicitly and normally fails to
yield exact solutions. Consequently, so many methods
have been developed for approximating or numerical
solutions. Perturbation method is one of the well-known
methods based on the existence of small parameters. In
order to overcome the problems associated with finding
the small parameter, different new methods have been
proposed to eliminate the small parameter, for example,
homotopy perturbation method (HPM) [2-7], variational
iteration method (VIM) [8-10], Adomian's decomposition
method (ADM) [11] and differential transformation
method (DTM) [12-22], He's homotopy perturbation
method which doesn't need parameter 1s
implemented for solving the nonlinear differential

small

equations. Homotopy perturbation method yields very
rapid convergence of the solution series in most cases
and usually only a few iterations leading to high accuracy
solutions. Thus HPM 1s a umiversal one which can solve
various kinds of nonlinear equations. The differential
transformation method was first applied in the engineer
domain by Zhou [23]. The DTM method is based on the
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Taylor's series expansion and provides an effective
numerical means of solving linear and nonlinear initial
value problems. A review of the related literature reveals
that Clhuou [24] make use of the intrinsic ability of
differential transforms to solve nonlinear problems. The
differential transformation method may be used to solve
both ODE and PDE. For example, Chen and Ho [25-26],
solve the free vibration problems using DTM. In general,
the previous studies have verified that the differential
transformation method is an efficient technique for
solving nonlinear equation as numerical method. In
current study uses the differential transformation method
to investigate the displacement of the vibration of a
nonlinear oscillator system and illustrates how the
corresponding nonlinear equation with nonlinear spring
should be converted in to differential transformation and
then solved by a process of inverse transformation.
Something new in this research is using sub-domain
technique in DTM program code to achieve more
accuracy toward ordinary domam that will be explained
bellow. We applied DTM and HPM for solving the
nonlinear oscillator equation. A comparison of the present
results shows that fourth order Runge Kutta numerical
solution and HPM confirm the high accuracy of DTM.

Basic Idea of Homotopy Perturbation Method: To explain
this method, let us consider the following function [27]:

A{u)=f(r1=0reQ (€)]

With the boundary conditions of:

B[u,au]—o,rer “
&

13

Where 4 1s a general differential operator, f(#) 1s a
known analytic function; B is a boundary operator and
T" is the boundary of the domain €. The operator A can be
generally divided nto two operators, L and N, where L 1s
a linear and N a nonlinear operator. Eq. (3) can be,
therefore, written as follows:

L(ujJrN(ujff(r):O (5

Using the homotopy technique, we constructed a

homotopy v(r,p)'QX[O 1]- R which satisfies:
H(v P L(v)-L{u )|+ p[A(v)- f(r)]=0

(6)
Or

H(V,p):L(V)*L(HD)Jr pL(un)Jr p[N(v)ff(r)JZO

9

Where pe [0,1], 13 called homotopy parameter and
#, 18 an initial approximation for the solution of Eq. (3),
which satisfies the boundary conditions. Obviously from
Egs. (6) and (7) we will have:

H(v.0)=L{v)-L{u,)=0 (8)
H(V,I)ZA(V)*f(F):O )]

We can assume that the solution of (6) or (7) can be
expressed as a series in p, as follows:

V= pv + pie £ (10)
Setting p = 1 results in the approximate solution of Eq. (3)
u=limv=v,+v, +v, +.. (11

p%

Implementation of HPM: To solve Eq. (1) with the initial
condition (2), according to the homotopy perturbation,

we construct the followmg He's polynomials
corresponding to Eq. (7):
Liv)= md;‘g’) e d‘;g’) (1)
N(v)= .l'czv(r)3 (12)
R e )
+p[md2;;2(t) d“;f)wm (I)J-#p(kv(t))

(13)
..into Eq. (13) and
rearranging the resultant equation based on powers of

Substituting v= v, + pv, + p’v, +

p-terms, one has:

Ful(t) vt du [t !
! dutz( )+ciu( )+kqvu(r)—m7d;2( )—cduudt( )—iquu (I)ZO
1:md%ip+c%&)+klvl(t)+m%a(£)+cm;7p+kluu(t)+kzvu(f)j=0

dv (I) dv (r) 3
I mszJrC ;z + kv, (8)+ 3k, (1) w(2)=0 (14)
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We assume m =1, ¢ = 1, k, = 100k, = 100 then

solution of Eq. (14) may be written as follow:
v, (£)=0.05(3 + 4)e™* sin(9.9875) + 4e™ cos(9.9875¢)

sin{9.9875¢) 00003 4.1814° ~0.13964' — 0093454+

vl(t):efw

cos(9.9875¢)] 001394+ 037984° + 062924' +0.02094 |+

w

g

e—Cl 5t (
¢ sin( 20962/)] 000774° - 0.00034+ 001534 ~00001 |+
& cos{29.9621) 000274 ~0.0023:4+ 0.0336.4’ + 0.000008 |+

Uﬂ

¥ sin( 908751 411984 +003074' + 00922400006 | +
¥ cos(998751)] 041354’ - 0.62644" ~0.01864-0.0139 |

vz (t)
2.5

e

5

sin(49.938t) [O.COO4A 8 2 3 7

+89x10 © - 0000034 - 0000CEA™ +62x10 A+O.COO€A4j|+

T2t

4

cos(29 962t]|:00ED03+OO(D1A—0 18644 z 3

—00026AT +0.00074" 701395A5:|+

25

e

8 2 3 —6

+000001A% - 000024~ +2.9x10 A—O.OCOBA4j|+

&

05(49.933t) [o.com5 +14x10"

T2t

6 4 2 3 5

Sm[29962t |:5 9x10 © —00006A -0 04T6AT — 0001347 - 0019747 + 040324

72 5t 9 2575t [ —00006-0 COZA—1.3281A4 —0.0583A2— 0 149%3 - 24@'1A5:|+
9 9875t [O £oo1-0 0039A+OO603A4 +0 OCSEAZ -0 36'57A3 -8 2482A5 J‘F
Lt 4 2 3

sl 9.98751; [OCOOOB+0.00S7A+O.4981A +00202A% + 07864, +17.O483A5:|+

It

4 2 3

000003-0.0001A+019394 7 +0.002747 + 0004A" +0114A5

cs[ 29962t [
n[5.9675 [00013+o oozssrzecesad ro 117882 10161305 43, 835A5}
&L sinfo0 osot)| 1 641070 +0 o008+ 0 00584 + 0001482+ 0 000483 —04191A5J+

I
I
-

05t

e[ 95875 OCOOl—O.OO48A—05656A4—0.0287A2—0.4268A3—87?6A5}+
&0 (g 0m751) | ~0.0005- 0.0006A-1. 170887 - 005682 - 00735 —1.2835A5} (15)

In the same manner, the rest of components were
obtained using the Maple package. According to the
HPM, we can conclude that:

x(1)= v () + v, (1) + v, (1) (16)
Fundamental of Differential Transformation Method:
Let x(#) be analytic in a domain D and let £ = ¢, represent
any point in . The function x(f) 1s then represented by
one power series whose center 1s located at £,. The Taylor
series expansion function of x(#) is in form of:

K

J[ =)

drt

(t-t
k!

YieD

«(1)=3

k=0 -

(an
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The particular case of Eq. (17) when ¢, = 0 is referred
to as the Maclaurin series of x(¢) and is expressed as:

=3 (z):[d;(t)}

As explained in [15] the differential transformation of
the function x(¢) is defined as follows:

Where x(f) 1s the original function and X(%) 1s the
transformed function. The differential spectrum of X(%) 1s
confined within the interval ¢ €[0, H|, where H 1s a
constant. The differential inverse transform of X(k) 1s

aet

It clear that the

transformation 1s based upon the Taylor series expansion.

YireD

0

(18)

X(k)—ki;%

(19)

defined as follows:

Il
I

(20)

is concept of differential
The values of function X(k) at values of argument & are
referred to as discrete, 1.e. X(0) 1s known as the zero
discrete, X(1) as the first discrete, etc. the more discrete
available, the more precise it 1s possible to restore the
unknown function. The function x(f) consists of 7-
function X(k) and
the 7-function with

its vkalue is given by the sum of

x
H
applications, at the right choice of constant H, the larger

as its coefficient. In real

values of argument k the discrete of spectrum reduce
rapidly. The function x(#) is expressed by a finite series
and Eq. (20) can be written as:

21)
Mathematical operations performed by differential
transform method are listed in Table 1.

Application of DTM: We applied the DTM for the Eq. (1)
and taking the differential transform Eq.(1) with respect
tot for =1 gives:
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Table 1: The fundamental operations of differential transform method

Original function

Transtormed fimnction

s)=af ()£ fe(t)

X (k)= aF (k)% BG (k)

x(;):w X ()= (F+ D) F{k+1)
dt
(=0 (E)= (b +1)(k+2) F(k+2)
ar
x(t)=exp(At) X(k):%
*0=70s) X(k):éF(E)G(k—I)
m{k+2)(k+1)X (k+2)+e(k+ DX (k+ 1)+ kX (k)+ k, X(20)=3.29 = 10° (25)

@X“‘f W)(jzz;X(wj)X (J-)B _o

(22)
From mitial condition in Eq. (2), then we can obtaimn:

X(0)=4,X(1)=15 (23)

From a process of inverse differential transformation,
it can be shown that the solutions of each sub-domain
take #+ 1 term for the power series like Eq. (22), we can
write:

JXi(k) 0<t<H, (24)

Where £ =0,1,2,....n represents the number of term of
the power series, I = 0,1,2,... expresses the #* sub-domain
and H, 1s the sub-doman interval. In this example we
consider ten sub-domains (1=10) and distance of each
mtervalis 0.2 for the case of m= 1,0 =1k, =100k, = 110,
we calculated X(k + 2) from Eq. (22) for 4 = 0.1 as
following:

X(2)=-5.805
X(3)=-23.89
X(4)=-49.7563
X(5)=--123.6128

684

Substituting Eq. (25) into the main equation based on
DTM, it can be obtained that the closed form of the
solutions is:

5 (£)=01+1.5 - 5.805" - 23.89 + 49.7563t" +123.6128" — 6.4869%° —613.127
—2852.991%° + 5415.7281° +31660.16" —3234.58" — 2.23:10°2 - 79598.9:°
+1.28x10°" +3.88x10%" — 6.49x10°4'° — 4.38 10"+ +1.37x10"1" +
3.55x10P4 +3.29 10"

20

xl(f):Z

k=0

t

Hl

]kxl(k)

(26)

In the similar manner, we will obtain another
sub-domain's series solution and we can present the
solution of Eq. (1) accurately.

RESULT AND DISCUSSION

In this study, the DTM was applied successfully to
find the displacement of the nonlinear oscillator problem.
For the different value of A (imitial amplitude, 0, 0.1, 0.2,
0.3, 0.4), results of the present analysis are tabulated in
Tables (2-6).The errors for small value of A parameter are
very small but for large value of A parameter, errors are
third order O(%).The comparison of the solutions
between DTM, HPM and exact solution is shown in
Figs. (1-3).a very interesting agreement between the
results 18 observed, which confirms the validity of the
DTM. By comparison the results, the advantages and
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Table 2: Compare results of Eq. (1) between HPM, DTM and Exact solution for A=0

t (B x()pmy (B pract EFPOFHPM-Exact EFPONDTH- Exact
0 0 0 0 0 0

0.2 0.1220526969 0.1220525878 0.1220526079 8.9E-08 2.01E-08
0.4 -0.094504 5030 -0.0945070717 -0.0945068146 2.3116E-06 2.5T1E-07
0.6 -0.0272984102 -0.0273022943 -0.0272984544 4.42E-08 3.8399E-06
0.8 0.0985265028 0.0985367087 0.0985302951 3.7923E-06 6.4136E-06
1 -0.0527370105 -0.0527409434 -0.0527393777 2.3672E-06 1.5657E-06
1.2 -0.040591 1425 -0.0406006304 -0.0405955781 4.4356E-06 5.0523E-06
14 0.0740627689 0.0740729325 0.0740673999 4.631E-06 5.5326E-06
1.6 -0.0227563914 -0.0227558993 -0.0227555713 8.201E-07 3.28E-07
1.8 -0.0434669932 -0.0434769731 -0.0434729300 5.9368E-06 4.0431E-06
2 0.0514404483 0.0514468241 0.0514435417 3.0934E-06 3.2824E-06

Table 3: Compare results of Eq. (1) between HPM, DTM and Exact solution for A=0.1

t (B x()pmy (B pract EFPOFHPM-Exact EFPONDTH- Exact

0 01 01 0.1 0 0

0.2 0.08490988562 0.08420767205 0.08490653921 334641 E-06 1.13284E-06
0.4 -0.14949981590 -0.14250000870 -0.1495090434 5 9.22755E-06 9.03475E-06
0.6 0.04668413322 0.04668244327 0.04669650569 1.23725E-05 1.40624E-05
0.8 0.08637066193 0.08637757134 0.08638851104 1.78491E-05 1.09397E-05
1 -0.10497172070 -0.104926766980 -0.10498865783 1.69371E-05 2.0988E-050
1.2 0.00956294369 0.00954883550 0.00955367884 9.26485E-06 4.84334E-06
14 0.07875395127 0.07876530966 0.07878110247 2.71512E-05 1.57928E-05
1.6 -0.06775851057 -0.06775028075 -0.06776714646 8.63589E-06 1.68657E-05
1.8 -0.01312120955 -0.0131441 6694 -0.01314375810 2.25485E-05 4.0884E-070
2 0.06547719741 0.06548689358 0.06550068107 2.34837E-05 1.37875E-05

Table 4: Compare results of Eq. (1) between HPM, DTM and Exact solution for A=0.2

t x{D) X(B)om XD vt EFPOFHPM-Exact Erronpri-exct
0 0.2 02 02 0 0

0.2 0.04151612425 0.04141430379 0.04147165851 4.44657E-05 5.73547E-05
0.4 -0.19977448710 -0.20030240830 -0.19984697897 7.24919E-05 0.000455429
0.6 0.12700132150 0.12758639270 0.12708783424 8.65127E-05 0.000498558
0.8 0.06237607654 0.06262260071 0.06252155614 0.000145480 0.000101045
1 -0.15418989670 -0.15487690950 -0.15433283893 0.000142542 0.000544071
1.2 0.06915738837 0.06947199766 0.06910566148 5.17269E-05 0.000366336
14 0.07258135459 0.07299136962 0.07283567405 0.000254319 0.000155696
1.6 -0.11301671270 -0.11353774030 -0.11310305849 8.63458E-05 0.000434682
1.8 0.02713631427 0.02717577577 0.02695491430 0.000181400 0.000220861
2 0.07186208510 0.07227325395 0.07209163180 0.000229547 0.000181622

Table 5: Compare results of Eq. (1) between HPM, DTM and Exact solution for A=0.3

t x{D) X(B)om XD vt EFPOFHPM-Exact Erronpri-exct
0 0.3 03 03 0 0

0.2 -0.01021260560 -0.0118219246 -0.0112219536 0.000302348 0.000599971
0.4 -0.23821681720 -0.2433678494 -0.2393758312 0.000459014 0.003992018
0.6 0.21383340800 0.2196407880 0.2142679299 0.000434522 0.005372858
0.8 0.01730901616 0.0153062337 0.0182393492 0.000930333 0.002933116
1 -0.19129410700 -0.1948202500 -0.1921998958 0.000905789 0.002620354
1.2 0.14058009020 0.1452666770 0.1401744334 0.000405657 0.005092244
14 0.04415270503 0.0438407228 0.0459336036 0.001780899 0.002092881
1.6 -0.15137429920 -0.1546046729 -0.1519032988 0.000529000 0.002701374
1.8 0.08210257304 0.0848765830 0.0808391436 0.001263429 0.004037439
2 0.06008677735 0.0607564583 0.0617481811 0.001661404 0.000991723
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Table 6: Compare results 0fEq. (1) between HPM, DTM and Exact solution for A=0.4

¢ batr2Y, bl HE) Bract Errormm-Bac Erronprm-Ead
1} 0.4 0.4 0.4 1] 1]

0.2 -0.0741056719 -0.0765130673 -0.0754457233 0.001340051 0.001067344
0.4 -0.2589108464 -0.2652064714 -0.2610869723 0.002176126 00041194099
0.4 0.3039112547 0.3149550188 0.3053700738 0.001458819 0.009584945
0.3 -0.0577034729 -0.0630450989 -0.0533878287 0.004315644 0.009657270

1 -0.2016518416 -0.20111923445

1.2 02216543016 0.2234969665
1.4 -0.0201771329 -0.0195075738
1.4 -0. 1683098554 -0.1681354583
1.8 01534984046 01512846098
2 00155985076 0.0180957999

-0.2061284339
02193148261
-0.0112969728
-0.1716125134
01471669879
0.02423779243

0.004476552
0.002339475
0.008580160
0.00Z2702655
0.006331417
0.008639287

0.005009089
0.004152140
n.008210601
0.003474054
0.004117882
0.006141294

DTM

a

Exact

25

[

S8

15
¢
Fig. 1: The comparison of the results of the HPM, DTM

and Exact solution for A=0.1

Egact o DTM -----

T T T

2.3

Fig. 2: The comparizon of the results of the HPM, DTM
and Exact solution for A=0.2
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—Exact o DTM----- HPM

0.4
03354
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014

xt) 007
-0.14

-02

-037

04

Fig. 3: The comparizon of the results of the HPM, DTM
and Exact solution for A=0.3

features of the DTM can be summarized as the present
method reduces the computational difficulties of the
other methods and all the calculations can be made
simple. By using sub domain technique the accuracy of
the method is very good. DTM can be used for both linear
and nonlinear differential equations. It iz observed that
DTM is a robust and powerful tool for solving the
nonlinear equations with high nonlinearity.

CONCLUSION

In this paper, we presented the definition and
operation of one dimensional Differential Transformation
Method (DTM) and Homotopy Perturbation Method
(HPM). We had shown that the homotopy perturbation
method and differential transformation method can be
used successfully for finding the displacement of
nonlinear oscillator problem. The comparison of the
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results between DTM, HPM and exact solution were
shown a very interesting agreement which confirms the
validity and high accuracy of the DTM. It revealed that
these techniques are very powerful and efficient in finding
the numerical and analytical solutions for predicting the

solution of such problem.
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