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A New Hybrid Genetic-Based Reduction Method in Nanoelectronic Circuits
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Abstract: In this paper, a new hybrid genetic algorithm 1s proposed to reduce the gate count i1 majority-based
circuits. To initialize the GA, a method based on Quine-McCluskey is used which accelerates the reduction

procedure. Also, a new approach for finding the constituent function set for an N variable logical function is
proposed which works based on the hamming distance. This approach enables us to find the constituent

functions among all feasible functions and helps to reduce the space of reduction problem. The improvement
of the proposed method for reducing the gate counts was satisfactory (20% improvement regards to related

works) while the number of needed iterations for the reduction procedure was highly decreased according to

other GA methods.
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INTRODUCTION

There are several candidates for post-CMOS IC
designs such as quantum cellular automata (QCA),
tunneling phase logic (TPL) and single electron tunneling
(SET)[1, 2]. The basic building block of QCA circuits 1s
majority gate, hence, efficiently constructing QCA circuits
using majority gates has received significant attentions
by researchers [2, 3]. This efficiency back to the number
of needed gates to construct a given function, i.e., uses
less number of majority gates and mnverters to marnipulate
a function. Related study goes back to 1960s [4, 5]. In [5],
A reduced-unitized-table-based synthesis method was
given and a Kamaugh-map (K-map)- based method was
presented m [5] which resulted in an exponential mumber
of majority gates. These methods are very useful and
suitable for synthesizing small networks by hand and
their hugh complexity does not allow them to be exerted in
large instances. Some majority logic reduction methods
have been proposed recently [6, 3], which are based on a
three-cube method developed from a
interpretation of the Boolean function. These methods

geometric

are still manual. Alse, some other works which are
automatic multilevel multi-output synthesis tool has
been developed based on these methods [7, 8]. The first
attempt  to synthesis the QCA based circuits based on
the Genetic Algorithm refers to 2007 [9]. This work was
the picneer one which exerts the GA to sumplify Boolean

functions based on majority and mverters. The Genetic
Algorithm (GA) is an optimization method that has been
used widely in many optinization problems like logic
reduction. In designing a combinational logic circuit, one
of important objective is to minimize the number of logical
gates used. Many researchers had come up with various
methods to improve designing process including Genetic
Algorithm (GA). As an example, n 1999, Carlos et.al uses
a genetic algorithm to design digital logic circuit with
mumber of gate counts constraint [10]. By using the
Genetic Algorithm (GA), a reduction method 1s presented
in this paper that minimizes the number of both majority
gates and inverters. The optimizer is implemented in
CHnet (the visual studio 2005 environment) and the
experimental results are obtained and compared with
recent available results in [3, 9, 6, 7]. The proposed
method can be easily extended to minority-based circuit
such as TPL and SET. Also, a new method to generate the
standard functions [3] is proposed which exploits the
Hamming distance between the mmn-terms to prepare the
standard functions. For more information on standard
functions see [3, 11, 12].

The Paper Organized as Follows: The next section
contains backgrounds about Quantum Dot Cellular
(QCA), Algorithm  and  Three-Cube
Representation. Afterward, the proposed approach has
been presented in section III. In this section, at first,

(Genetic
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Fig. 1: (a) A QCA majority gate (b) A QCA inverter

[

a
Fig 2: F=a'b'c+abcta'b'c, the black points are on-set
points and the white points are the off-zet points

a new approach to construct the standard functions has
been explained. The section will be continued with the
proposed reduction method based on GA and describes
its fundamental operations. The simulation results have
been compared with the previous works in section IV.
Finally, the last section summarizes our conclusion
rem arks.

Principles and Fundamentals
Basic Operators in Quantum Dot Cellular: Any QCA
circuit can be built using only majority gates and
inverters. The Fig. 1 (a) shows a QCA gate that
implements the majority function.
M (A,B,C)=AB+BC+AC (1)

As it is seen in Fig. 1 (a and b), each QCA majority
gate requires only five QCA cells and every QCA inverter
gate can be implemented by 13 quantum cells. As it is
shown in Eq. (2a) and (2b), the AND gate and an OR gate
can be constructed using majority function by fixing
the polarization of one input to a constant logic *0* or
logic “1°. Hence, QCA circuit is based on majority gate-
based circuits instead of AND/OR/Inverter gate-based
circuits [1,2].

M{A,B,0)=AB (2a)

M{A,B.1)=A+B (2b)

Therefore, reducing the number of both majority
gates and inverters is to be considered in the logic
synthesis of QCA circuits.
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Logic reduction using the majority and inverters
is much more complex than that of Booleanlogic[5].
In fact, the classical methods are not adequate to be
used for reducing the number of basic operators in
majority/minority logic. There for, new reduction methods
are needed to do so[1,2]. Some recent works are [2, 5, 9].

Genetic Algorithm: Genetic Algorithms [7, 8] (GA=) is as
a posgible zolution for many search and optimization
problems. In fact, GAs are evolufionary algorithmsg
which imitate the behavior of the nature to solve
problems. Each solution (individual) is represented as a
string (chromosome) of elements (genes) which has a
fitness value based on the value given by an evaluation
function. The fitness value measures how close the
individual is to the optimum solution. A set of individuals
considered asz a population that evolves from one
generation to the next through the creation of new and the
deletion of some old individuals. The process starts with
an initial population createdin some way, e.g., randomly.

Evolution Can Take Two Forms

Cross-Over: The chromosomes of two individuals are
combined to gain a new individual for insertion in the
population to replace another individual. The individuals
are selected by techniques ensuring that the selection
probability of each individual is proportional to its fitness.
New individuals are thus likely to have a higher fitness
than those they replace.

Mutation: A gene of a selected individual is randomly
changed. This provides additional chances of entering
unexplored sub-regions and also holding the method
from getting stock on local optima. Evolution is stopped
when either the goal is reached or a maximum CPU time
has been spent.

Three-Cube Representation of Three-Variable Boolean
Functions: According fo [1, 2], a Boolean function of
variables can be represented by a binary n-dimensional
hyper cube. Each dimension of the hyper cube is
corresponds with exactly one literal and the coordinates
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Fig. 3: Three possible 3 variable 2 min-terms functions

are comresponds with the Boolean value of that literal.
In [3], the method in [1, 2] is applied to three-variable
Boolean functions in the three-cube domain. For Boolean
functions of three binary variables (a, b, ¢), there are 2’
distinct min-terms each correspond to a vertex (point) of
the three cube. Figure 2 illustrates an example of cube
presentation for a three variable 5 min-terms Boolean
function.

It 18 obvious that there are 256 Boolean functions
for three variables, but they can be mapped to only
80 equivalence classes by permuting their inputs [11, 121]
to produce the same functionality. Tn [3], a symbolic
mapping in combination with discarding the functions
with more than 4 min-terms was considered that could
simplify the mentioned 80 functions to 13 standard
functions. The wmtroduced mapping was based on
changing the name of variables which means the authors
considered that a three-variable Boolean function is
defined by three variables called A, B and C each of them
can be mapped into any of a, b, ¢, a’, b” and ¢’ (a’ 1s the
mverse of a). In this case, they truly claim that there 1s no
difference between the function F=abc¢’+ab’¢’+a’be and
F=a’bet a’be’+ab’c (the mapping 1s a~b, b~c and ¢~a) in
terms of simplification. They use the cube representation
to show their definitions. As an example, all the three-
variable Boolean functions that contain 2 min-terms are in
one of the following groups: 1) two adjacent points
(one edge); 2) two nonadjacent pomts, but mn one face;
and 3) two nonadjacent points and not in one face.
(Figure 3).

Using this method, they could find 13 standard
three-variable Boolean functions that covered all the
three-variable Boolean functions, 1.e., these standard
functions can map to all feasible functions in the space of
three-variable Boolean functions.

Proposed Method: In this section, an approach for finding
the N-Variable Boolean standard functions is presented.
Then, a Genetic based simplification algorithm is
proposed and its various parts consists of chromosome

c
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(c)

structure, reproduction operators, fitness function and
initialization method are introduced.

N-Variable Standard Functions (CFSs for NVKMBF):
As in section II.C, the cube
representation could help to find 13 standard functions
(in this paper we call them as Constituent Functions
Set (CFS)) which can cover all the space of three-variable
Boolean functions. Consider the CFS for N-varniable K
Min-term Boolean Functions (in this paper we call them
NVEMBF: N-Variable K Min-terms Boolean Functions)
is required. In this case, the cube base approach is not

it was mentioned

useful because the corresponding hyper-cube cannot be
imagined when N is more than three. Here, we propose an
approach based on Hamming distance to find the CFS in
NVKMBF space.

As it was put, three of
functions on a cube m cube representation for
3V2MBF: 1) both min-terms are adjacent, 2) The min-
terms are in one face of the cube and non adjacent
and 3) the min-terms are non adjacent nor in one
face. On the other hand, the min-terms of a 3V2MBF
that the Hamming distance between its min-terms 1s one
are adjacent. If the Hamming distance between its min-

there are groups

terms 1s two, its min-terms are i cne face of the cube and
if this distance is three, its min-terms are not adjacent nor
on one face of the cube. This definition can help to
implement an algorithm to find CFS m each multi-variable
function.

Here, we introduce a definition called Hamming
Distance Set (HDS). An HDS for an NVKMBF is a set of
hamming distances between its min-terms. As an instance,
the HDS for the function F=a'be+ab'c+abe 1s {3, 2, 1}.
This set shows that the hamming distance between the
first and second min-terms in Fig. 3, between the second
and third is 2 and between the third and first is 1. If two
functions with equal number of variables and min-terms
have the equal HDS, they correspond to each other in the
cube representation. Note that the permutation in their
HDS is not mmportant.
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Table 1 number of all possible functions with 4 variables

# of Variables #of Min-terms All possible fimctions #of CFS
4 1 C{2 178 1

4 2 C (2%, 27120 4

4 3 C (2%, 37560 6

4 4 C (2%, 471820 15

4 5 C (2%, 574368 19

4 6 C (2%, 6)=8008 26

4 7 C (2%, T)=11440 27

4 8 C (2, 8)=12870 32
Total 39194 130
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Fig. 4. a chromosome which mndicates the function: M
(A, B.M(A, 0, 1))

As an example, the number of all feasible functions
with 3 variables and 3 min-terms 1s 56 (C (2%, 3) =56 where
C 18 combination operator). In sum, one can attain the CF3
for NVKMBF by choosing the functions which their
HDS are not equal. A program m C# was implemented
which provides CFS for NVKMBF using the presented
method. As an mstance, Table 1 illustrates the CFS’s for
4VKMBEF:

Tt is obvious that the number of 4V3MBF is C (2°, 3)
= 560 whuch just 6 of them are needed to build all other
534 functions using a simple mapping. Hence, simplifying
these 6 functions result in simplifying all possible
functions in the form 4V3MBF.

Proposed Hybrid Genetic Based Reduction Algorithm:
In this section, a hybrid genetic based algorithm is
proposed for reduction in nano-electronic majority
based circuits. At first, the various parts of the genetic
algorithim  are introduced which
chromosome structure, proposed reproduction operators,
fitness function and proposed population initialization.

consist of the

Then, the algorithm 1s presented step by step.

Chromosome Structure: In this paper, a tree structure

for the chromosomes i1s considered. This structure

was firstly used for majority based circuits in [6].
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Fig. 5. Crossover operator changes the sub-trees of
selected chromosomes

In this structure, each chromosome is a tree which
implements a circuit. Each node of the tree is a literal or
function. The internal nodes are functions consist of
Inverters and Majorities while the external nodes are the
function variables or constants (“0” and “17). Figure 4
illustrates this structure for a circuit.

Reproduction Operators (Crossover and Mutation):
There are two major operators for GA: Crossover and
Mutation. The crossover operator for the mentioned
structure works as follow: Two parents are selected from
the population via a selection process. These parents
should combine to each other and produce two new
chromosomes (children). In this paper, a sub tree of each
parent is selected and replaced with each other. The sub
trees are selected using a random process. Figure 5
llustrates this process.
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Fig. 6: Mutation operator which randomly change a sub-tree

Tn each iteration, the crossover operator is performed
according to the predefined probability Pc. The pseudo
code for cross over 1s presented in Algorithm 1.

Algorithm 1: Crossover
Input: two chromosomes Cl, C2, Output: two modified
chromosomes C1, C2

Select node N1 in C1 and node N2 in C2 randomly
Replace the sub tree of node N1 in C1 with N2 and
the sub tree of node N2 in C2 with N1

Update the information in C1 and C2

Return the Modified Cl1 and C2 as two new
chromosomes

The Mutation Operator Is as Follow: A sub tree of a
chromosome 1s discarded and a new generated sub tree 1s
replaced with that Tlis process i1s performed m each
iteration and each chromosome 1s mutated via the
mentioned process with probability Pm. Figure 6
illustrates this process.

The pseudo code for Mutation is denoted in Algorithm 2:
Algorithm 2: Mutation

Input: A chromosome
Chromosome C

C, Output Modified

Select a node N randomly in chromosome C

Build a sub tree S usmg the valid operators
(Majority, Inverter, Variables,...) via a random
process

Replace N with 8 and update the parent information
in C for new sub tree

Retumn C as the modified chromosome
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Fitness Function: The fitness function is a function
that shows the virtue of a chromosome. Here, the fitness
in [6] 1s used.

WC,.F)
zk

Fir(C) 3

Where C, is the i" chromosome and F is the expected
logical function. »(C,F) is the function that counts the
number of equivalent min-terms between the implemented
logical function by C; and F. If the fitness of i*
chromosome is equal to 1.00 (that means the chromosome
implements the desired circuit completely), we use:

1
Number of nodes in C,

4

Fit(C) = Fit(C)+

This function can classify the clromosomes
according to both similarity to the expected logical
function and number of nodes. The value of fitness
function will be increased when the number of nodes is
decreased. Also, further works on the fitness function is
possible to reduce the number of levels and other

primitive operators.

Population Initialization: Tn the proposed method, a
heuristic approach 1s considered for imitializing the
population. Here, one of the chromosomes in mitial
population 18 produced via a process which implements
an adequate circuit. In fact, the SOP of the given circuit 1s
simplified using the Kamaugh-map and Quine-McCluskey
procedure and then its corresponding majority expression
is produced using Eq.(Za) and Eq.(2b). The remaining
chromosomes are made via a random process. The
process for producing the population is presented in
Algorithm 3.
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Algorithm 3

Input: the SOP of the given circuit, output: Population

¢« Simplify the SOP (Sum of Products) of the given
function using one of the Karnaugh-map or Quine-
McCluskey

¢ Convert the simplified result into the majority based
expression using Eq (2a) and Eq (2b)

*  Buld the tree structure of the attained majority based
structure and add this tree to the population as a
new chromosome.

*  Produce the remaining chromosomes via a random
process.

Proposed Algorithm: Algorithm 4 illustrates the proposed
hybrid genetic based algorithm for reducing a give SOP
for a desired circuit M.

Algorithm 4 Simplify the circuit M with the given SOP

*  Imtialize the parameters Pm, Pc, Population size and
iteration number.

*  Imtialize population according to section 3 .1v

*+  While stopping criteria s not emerged

*  Perform cross over and mutation and replace the best

children with worst chromosomes from the
population

¢ Calculate the fitness of chromosomes according to
M and report the best fitness

¢+  Endwhile

¢ The best chromosome is the best circuit found by

the algorithm

Table 2 the comparison results between the proposed method and [3]

The algorithm is stopped according to predefined
stopping criterion that is the number of iterations in this

paper.

Simulation Results: In this section, the results are
compared with some recently proposed algorithms. The
proposed algorithm is implemented in C#Net m visual
studio 2005 environment. The mmplemented algorithm 1s
run on a personal computer with 2 GB of RAM and 1.66
GHz Core 2 Duo mobile CPU. The results are compared
with some new methods cited in[3, 8, 9]. In addition, some
CFS’s for AVKMBF and 6VKMBF are reduced using the
proposed algorithm. All experiments are performed under
the following conditions:

Pm=0.2, Pc=0.9, Population size: 70, Max iterations: 500

The value of Pm and Pc was set according to several
experiments. Table 2 shows the results in comparison with
[3] according to 13 standard functions that were defined
1n that work.

The table shows that the proposed method find some
majority expressions for 13 standard functions which are
more simple than that cited in [3] in terms of number of
majorities and inverters. For example in function 11, the
proposed method found the majority expression which
has one majority and one inverter less than that cited in
[3]. The improvement in this case was around 6% in terms
of number of majorities and 37% in terms of number of
inverters. Table 3 shows the comparison results between
the proposed method and [8].

Previous Worksf3] Cur Approach

Rank” Function Mgjority Bxpression M I Migjority Expression M i

A M(A,0,1) 1 0 A 0 0
2 AB M(A,B.0) 1 0 M(AB.0) 1 0
] ABC M(M(A,B,0),C,0) 2 0 MM(A,C0,B.0) 2 0
17 AB+AB M(M(A,B,0),M(A”,B’,0),1) 3 2 M{LMBAOMARLD) 3 1
s AB+BC M(0.B,M(A,C,1)) 2 0 MOBMACL) 2 0
10 AB+BC M(M(A,B,0),M(B",C,00,1) 3 1 MAMB,CLMABILY 3 1
6  ABHABT M(M(A’,B,1LM(A,B,C),M(A,B,0) 4 2 M{M{AB O,M{AB D MAC L) 4 1

ABC+ABC’ M(M(A,B,C").M(A,B",C).0) 3 2 MAMOBCMBCI) 3 1

ABC+A'B'C’ M(M(A’,B,1),M(B",C",0,M(A,C,00) 4 3 MM{CA D MCBOMABIDY 4 2
7 ABC+A'BC+ABC” M(M(A,B.C"),M(A,B”,C),M(A’,B,0Y) 4 3 MMMABCLL A CAMABCY 4 2
13 ABC+A'B'C+AB'C+A'BC’ M(M(A’B,C)M(AB",C).CY) 3 3 MCMABC),MABC) 3 2
11 AB+BC+A'B'C’ MM(B,M(A,C1L0M(A MB,C.0),0,1) 3 3 MAKLBCHAB LA AMACBE) 4 2
9 AB+BC+AC M(A, B, C) 1 0 MA,B O 1 0
Total number of gates 36 19 Total number of gates 34 12

*The Rark is the number that were used in [3] for the standard functions, M is number of Majorities and I shows number of Inverters
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Table 3: Comparison results between the proposed method and [7]

Previous Works[7] Our Approach Improvement
Function Majority Expression M I Magjority Expression M I M I
A M(A0,1) 1 0 A a 4] 1 a
AB M(A,B,0) 1 0 M(AB,0) i 1] 0 4]
ABC M(M(A,B,0),C,0) 2 0 MM(A,C0),B,0) 2 1] 0 1]
A+B M(A,B,1) 1 0 M(AB,L) 1 1] 0 1]
A+BC M(M(B,C,0),A,1) 2 0 MM(LAC)LAB) 2 1] 0 1]
AB+4’B’ M(M(A,B,0),M(A",B*,0),1) 3 2 M{IMBAOMARBIL) 3 1 0 1
AB+BC M(0,B,M(A,C.1)) 2 0  M(OBM(A,CL) 2 1] 0 1]
AB+BC MM(A,B,0),M(®B’,C,0),1) 3 1 MAM®B,C1).MABIL 3 1 0 1]
AB+A'B'C M(M(A’,B,1),M(A,B*,C),M(A,B,O)) 4 2 M{AMABOMAB L MACD) 4 i 0 i
ABC+ABC’ M(M(A,B,C"),M(AB’,C),0) 3 2 MAMOBC,MBCI) 3 1 0 i
ABC+A'B’'C” MMI(A’,B,1),M(B’,C*,0),M(A,C,0)) 4 3 MAMCA D MCB,O,MABIL) 4 2 0 1
A+B+C M(M(A,B,1),C,1) 2 0  M(O,BMA,CI) 2 4] 0 1]
A+BC’+B’C M(M(A,B,C)M(AB’,O),1) 3 2 M{AMABC) AMBCIY) 3 1 0 1
AB+A'B'+AC  M(M(A,B’,1),M(A",C,1),M(A,B,0) 4 2 M{IM{AB I MAOGMBI1,C)) 4 1 0 1
AB+BC+A4'B'C M(M(A,B,C),M(A’ B, 1),M(®B’,C",0) 4 3 M{MAB 1), BMACI)
Table 4: Comparison results in terms of number of needed iterations between the proposed method and [6]
Function GA based in [6] (maximum needed iterations) Proposed method fmaximum needed iterations)
A 100 80
AB 100 75
ABC 100 85
A+B 100 100
A+BC 100 100
AB+A4'B’ 500 250
AB+BC 500 150
AB+B'C 1000 650
AB+A'BC 3000 550
ABC+AB'C’ 1000 450
ABC+ABC’ 5000 500
A+B+C 100 100
A+BC+B'C 1000 550
AB+A'BHAC 4000 900
AB+BC+A'BC 1000 750
AB+BC'+A'C 5000 750
ABCHAB'CH+A'BC" 5000 650
B+BC+AC+ABC! 5000 900
ABC+AB'C+A'B'C+A'BC’ 2000 850

Table 5: Reduction results for two 4 variables functions

Function Majority expression produced by the proposed method Output file of the program

abe'd+ abed+ abed M(M(M(B,C,D),A,0),B,0)
® @

& @od
cfelele

ab'cd+ abe'd'+ abed M{M{4,C,D").M(M{C,B",1),1 D).D)

500 6
& ©ov
o7pe
®
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Tn this case, the improvement was around 4% in terms
of number of majorities and 55% m terms of number of

inverters. The following table shows the comparison

results between the proposed method and the method
cited in [9]. The method in [9] is a genetic based method
and 1ts results are the same as the proposed method in
terms of majority expression but the number of iterations
has been improved.

It 15 obvious form Table 4 that the proposed
algorithm could find adequate solutions in less iterations
i comparison with [9]. Table 5 illustrates the results of
simplification wsing the proposed algorithm for some
CFS’s for 4V3MBF.

CONCLUSION

In this paper a hybrid method based on the Genetic
Algorithm to reduce the number of gates in majority-
based circuits was proposed. A method for initializing
the chromosomes was proposed which accelerate the
convergence properties of the GA. Also, a new approach
based on the hamming distance was introduced that
helped to find the constitutive functions among the
possible functions with N variables and K min-terms.
The results of the proposed reduction method were
compared to other new methods. The results showed that
the proposed initialization method can accelerate the
convergence of the method. Moreover, the proposed
method excels other methods in terms of the needed gate
count for the attained reduced circuits (around 20%
improvement). The method can be readily used in other
reduction problems such as minority based functions.
Also, the proposed approach for finding the constitutive
functions can malke the simplification problem easier.
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