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Couette and Poiseuille Flows for Fourth Grade Fluids Using
Optimal Homotopy Asymptotic Method
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Abstract: In thus paper, the steady flow of a fourth grade fluid, between two parallel plates 1s considered.
Depending upon the relative motion of the plates we analyze four types of flows: Couette flow, plug flow,

Poiseuille and generalized Couette flow. The nonlinear differential equation describing the velocity field 1s
solved using Optimal Homotopy Asymptotic Method (OHAM). It is observed that the Optimal Homotopy
Asymptotic Method 1s more efficient and flexible than the Perturbation and Homotopy Analyses Method.
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INTRODUCTION

Plane Couette flows are generated by the action of
boundaries in relative motion, i.e., fully-developed flows
between parallel flat plates of infinite dimensions, driven
by the steady motion of one of the plates. Flows between
two parallel plates, or two coaxial cylinders or a flat plate
and a convex cone with its top sturing the plate are the
familiar examples of Couette flows [1, 2].

In recent years, there has been a great deal of interest
in considerate the behavior of non-Newtonian fluids as
they are used in many engineering processes. Also, non-
Newtonian fluids are intensively studied by
mathematicians, essentially from the point of view of
differential equations theory. On the other hand, in
applied sciences such as rtheology or physics of the
atmosphere, the approach to fluid mechanics 13 n an
experimental setup leading
material coefficients. Moreover,

to the measurement of
in  theoretically
studying how to predict the weather, ordinary differential
equations represent the main tool. Further, since the
failures in the predictions are strictly related to a chaotic
behavior, one may find it unessential to ask whether the
fluids are really Newtonian. Fluids which do not obey the
Newton's law of viscosity are called as non-Newtoman
fluids. Generally non-Newtonian fluids are complex
mixtures slurries, pastes, plastics, gels, polymer solutions
etc [3-3].

In the class of non-Newtonian fluids as second grade
or higher orders fluids have different features. Rheological
properties of such fluids are specified in general by their
so-called constitutive equations. The Rivlin-Ericksen
model [6] and Noll model [7] are among those that have
established a considerable attention. Here, we accept the
importance and simple model that has been used to
describe the rheological characteristics exhibited by
certain fluids is the fourth-grade fluid given in [8].

The fundamental goverming equations for flmd
motions are the Navier-Stokes equation. This inherently
non-linear partial differential equation has no general
solution and only a small number of exact solutions have
been found because the non-linear inertial terms do not
disappear automatically. These problems become even
tricky to solve if non-Newtonian fluid flows are
considered, since the equations of motion become highly
solve practical problems, different
perturbation techniques have been widely used in

non-linear. To

engineering and science [9 and the references therein].
Mostly, these perturbation techniques lead us some
important and attractive results. However they can not be
applied to all nonlinear problems. Therefore in the past
few years, some new techniques have been developed to
eliminate the “small parameter” assumption, such as the
artificial parameter method proposed by Liu [10], the
Homotopy analysis method by Liao [11], the variational
iteration and Homotopy perturbation methods introduced
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by He [12-18]. Recently, Marinca et al. [20-23] developed
a new techmque. It is known as the Optimal Homotopy
Asymptotic Method (OHAM). In their several papers
Marinca et al. applied this technique to study different
norlinear boundary value problems of physical and
engineering interest.

In this paper, the fluid between the plates 1s of fourth
grade fluid for plane Couette flows having been studied.
Four different problems depending upon the sliding plates
are considered, i.e., Couette flow, plug flow, Poiseuille
flow and generalized plane Couette flow. The best of our
knowledge no efforts have been made using OHAM for
the title problem. The paper 18 orgamzed as follows:
Section 2 contains the basic governing equations. In
section 3 basic idea of Optimal Homotopy Asymptotic
Method (OHAM) and the solution of the four mentioned
problems using (OHAM) are given. Section 4 1s reserved
for conclusion.

Basic Equations: The basic equations governing the
motion of an incompressible fluid in the absence of body
forces and thermal effects are:

divv =0 ()

D
fo) ditv =-Vp+divt, @)

Where: p is the constant density of the fluid, v is the
velocity vector, p 1s the pressure, T is the stress tensor

and 2 denotes the total derivative.
Dt

The stress tensor T for the fourth grade fluid is given
by.
3

T=>D,

.
‘Where: -
D, =uB, D,=aB, +uoF,
D= BB, +B,(BB,+B,B)+ B,(rB,)B,
D, =B, +7,(B.B + BB, )+v,(B]) “
+7,(B,B} + BB, )+ 7,((#B,)B, )
+7, (B, ) B+ {y,1rB, + y,r(B,B,))B,,

in  which g is the coefficient of viscosity,

@l 31, B 33, V1 V5 V5 Vo Vs Ya ¥, and y, are the material
constants. The Rivlin-Ericksen tensors B, are defined by
B, =1, is the identity tensor and

_DB,y
B, = o +B, ,(Vv) 5)
+(V¥)' B,,, n=1l.

Since the flow is one dimensional, the velocity field
18 v = (4(3),0,0). The momentum Eq. (2) n component form
becomes:
x- component of momentum equation:

du Y dn d (6)
2o 6(8,+ = ==
N Z 2 (JBZ ﬁ3)[£{y} dyZ Z

y-component:

(Y FALAEARNN.)
(MIWZ)dy[{dyJ }4[%%”’# Zde[{a’yJ } dy
(7

We define the generalized pressure p by the
following relation:

2 4
. it dut
p =—-p+(20 +a2)[dyj + 4(9/3 + Y +?;ﬁ][d}}]

(8)
Making use of Eq. (8) in Eq. (7) gives,

ap’ ©)

Eq. (9) shows that p’ = p'(x) Consequently, Eq. (6)
reduces to the second ordmary non linear differential
equation.

Basic Idea of Oham: Here, we apply OHAM to the
following differential equation:

(1)
L(u(y))+g(y)+N(u(y>>—o,B[u,Z‘J 0

Where L is a linear operator, #(y) is an unknown function,
g(») 18 a known function, N 1s a nonlinear operator and B
is a boundary operator.

According to OHAM we construct a homotopy
&y, p):R=[0,1]-R which satisfies
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(- pL(@(y. p)+ gly)]=H{p)L{¢(y.p) (12)

a E
+g(p)+ N(p{y, P))],B[qb( . p),Mj

&y
Where peR  and pe[0,1] is an embedding parameter,

0

H(pis a nonzero auxiliary function for p=0, H(0) = 0 and
@(v.p) 1s an unknown function. Obviously, when p =0 and
p = 1 it holds that ¢(3,0) = u (v) and ¢(¥,1) = u(y)
respectively.

Thus, as p varies from O tol, the solution ¢(y,p)
approaches from u. (3) to u(y), where u. (y) 13 obtained
from Eq (23) for p=0:

L{u,(¥))+ g =0, (13)

du, J

s
Next, we choose auxiliary fimction H(p) in the form

Blu
{ ’ d

Yy

H(p)=pc, + ple, +... (14)
Where ¢,,¢,,... are constants to be determined shortly.

To get approximate  solution, expand
$(y,p,c) in Taylor's series about p in the following

dar we

manner,

o]

Py psc)=u, (¥)+ 2w (30,000, ) p

k=1

(15)

k

Substituting Eq. (15) inte Eq. (12) and equating the
coefficient of like powers of p, we obtain the following
linear equations.

Zeroth order problem is given by Eq. (13) and the first
and second order problems are given by Egs. (16-17)

respectively:
L{u (y))+g(y)=eN (1 (). (16)
du |
B[ul,dyJ 0
L(w; ()~ L{m ()=, ¥, (. () (17)

+¢, [L(ul(y))-*—Nl(%(J’)afﬂ(y))}

a’uzjo

B[uz,
dy
The general governing equations for u,(y) are given by:

1230
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L ()-Ll (e (n(y) 09
k-1 L(uk‘f(y)

+._1c, 4 uﬂ(y)=“1(J’)= s ||

B e

_ du, | _

k=23, B{ ’ y} .

Where N, (to (¥),2,(1),....4x,(y)) 18 the coefficient of p” in
the expansion of Md(y,p)) about the embedding
parameter p.

N{(¢(y.p.e))=N.(u () (19)

N (0,1, ) P
m=1
It has been practical that the convergence of the
series (15) depends upon the auxiliary constants ¢,,¢,,... If
it 1s convergent at p = 1, one has

2 - (20)
u(y,cl,cz,...,cm):uo(y)Jr Zu, (y,cl,cz,...,c:)

i=1

Substituting Eq. (20) mto Eq. (10) it results the
following expression for residual:

s}

-Gy

R(y,cl,cz,...,cm):L(ﬂ(y,cl,cz,. )]

18+ N(i#(,6, 050, ) @D

IfR =0, then u will be the exact solution. Generally
it doesn’t happen, especially in non-linear problems.

There are many methods like Method of Least
Squares, Galerkin’s Method, Ritz Method and Collocation
Method to find the optimal values of ¢, i = 1,2,3,.... We
apply the Method of Least Squares as under:

b

ij(y,c

a

. @22

15C35 -5y

sl

J(e )

Jdy

Where o and & are properly chosen numbers in the
domain of the problem.

L
de, e,

(23)

Where a and b are properly chosen numbers to locate the
desired ¢(i = 1,2,...,m). With these constants known, the
approximate solution (of order m) is well-determined.



World Appl. Sci. J., 9 (11): 1228-1236, 2010

Plane Couette Flow Problem: Plane Couette flow, 1.e.,
fully-developed flow between parallel flat plates of infinite
dimensions, driven by the steady motion of one of the
plates. (Such a flow 1s called shear-driven flow.) In this
flow the upper wall 1s moving with constant speed U (so
that it remains in the same plane) while the lower one is
fixed. The pressure gradient is zero everywhere and the
gravity term is neglected, so Eq. (10) becomes[1-2]:

d*u du zdzu (24
—+6(8, + — | —=0,
#dyz (182 ﬁB)[a’yJ dyz

with the boundary conditions u(y) = 0 at y = 0, u(y) = Uat
y=2d

According to OHAM, we choose the linear and non
linear operators as:

62u(y, p) (25)

u(y, )Y G 6)
Vit {1 Pt

The boundary conditions are:
w0, p) = 0,u(2d. p) = U 27
By Eq. (13) g(v) = 0.
We obtain the following three equations from Eqgs.
(18yand (19), (m=2)

e "(1) =0, 1o (0) = 0, e (2d) = U, (28)

u’\ () ")t "(v) - Blus (1) ue "(3) =0,
w,(0)=0, 2,(2d) =0, (29)

) - ") - s, " (39 - 20, s Wte "o, ()
- efue (5D e ") = 0

(30)
w,(0) =0, w,(2d) =0,
Eq. (28) has the following solution:
_u (31)

If this result is substituted into Eq. (20), we get the
solution of Eq. (29):

u(y) = 0, (32)

Using the expressions from (31) and (32) m Eq. (30),
we obtained the second-order solution in the form.

u,(¥) =0, (33)

Therefore, the solution of the plane Couette flow
upte second order takes the form.

- _ E (34
wy)=" ¥
The solution obtains from OHAM 1s

identical with the solution obtained by PM, HPM and
HAMI1, 2].

Plug Flow Problem: Plug flow is fully-developed flow
induced between two infinite parallel plates, placed at a
distance 2d apart, where both plates move with the same
speed U7 Assuming that the pressure gradient and the
gravity in the x-direction are zero [1-3]. The boundary
conditions are:

u(0) = U, u(2d) = U. (35)

Here we apply the OHAM to solve problem (24) with
the boundary conditions (33). Proceeding as before, we
obtain Zeroth, first and second-order OHAM solutions in
the form:

wo ()= U, (36)
w() = U, (37)
) = U, (38)

Substitution of Eqs. (36)-(38) into Eq. (20) vields the
second order approximate analytic solution for the plug
flow problem:

a(y)=U. (39

The solutions obtained here are similar with the
solutions [1-2].
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Fully Developed Plane Poiseuille Flow Problem:
Plane Poiseuille flow, occurs when a liquid is forced
between two stationary infimite flat plates, under constant
pressure gradient ¢p/dx and zero gravity. By taking the
origin of the Cartesian coordinates to be on the plane of
symmetry of the flow and by assuming that the distance
between the two plates 13 2d, the boundary conditions
are: T, = i du/dy = 0aty=0 (Stationary)and u =Oaty =
d (Stationary Plate). Note that the condition at y = —d may
be used instead of any of the above conditions [1-3]. The
equation of motion (10) takes the form

2 Z 42 (40)
B[] L4
dy dy ) dy
Where ﬁ=6(ﬁz +}33), 4= dp’/dt  with the boundary
I I
conditions:
w(—d)=0, u(d) = 0. (41)

In this case, linear and non-linear operators are
respectively:

L(u(y,p)):au(yz’p) g(y)=0 (42)
ay
B duiy. p) 2é‘zu(y,p) (43)
N(u(y, p))= ;3[ 5 J 7
Zeroth-order problem given by Eq. (13) (g(y) = O):
to "(3) - A =0, o (—d)=tta (=0 (44
It 1s obtamed that
1 2 2 45
uu(y)=5(-Ad +4 ) (43)
First-order problem given by Eq. (16):
At ("0t ") 0 b $)) e ") = 0,
w,(0) = 0, u,(2d) = 0, (46)
u (—d)=u(d)=0
The solution of Eq. (46) 1s given by
(47)

1
ul(y, cl): 5 (Aj y4/301"43 d4ﬁcl)'

1232

Second-order problem given by Eq. (17) for k=2:

) (y)-w"(y)-e u"(y)-2epu’(y)u(y)u'(y)

z

B ()] w(y)-epu () (w/(»)) =0 (48)
w,(~d) = u,(d) = 0
with solution:
w, (3 e,0)= %(-3 Ad B, +3.47y pe, (49)

34 B 347 e -2 4 A0 B
+ 247 B -3 A e, + 347y e, )

For the second order approximation solution, adding
Egs. (45), (47) and (49), we obtain:

ﬁ(y,cl,cz):uu(y)Jr ul(y,cl)Jruz (y,cl,czj

RE R

+12(y4_d4)+&42ﬁ(y6_d6) +3c, (y4_d4)) (50)

Substituting Eq. (50) m Eqg. (21), we obtain the
residual as:

R(z,cl,cz):ﬁ"(y)+ﬁ( (51)

For determination of constants (¢.7 = 1,2), we use the

Method of Least Squares as under:

: (52)
J(en.ey)= IRZ (v.e.ec,)dz
6J(c1,c2):a](cl,c2): (53)

de, Jc,

The solution of Fully developed plane Poiseuille flow
problem upto second-order by

A=2B=02d=1
¢, =-0.5371148763117504

¢, =-0.03399665595169708.

i(y)

1
+55 (0.618031- 135657y +0.738541y").

Ly, L .
—(-2+2y")+—(0.859384 - 0.859384
S22y ) s
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Table 1

v OHAM PM HAM
-1 0 0 0

-0.8 -0.310608 -0.33375 -0.335713
-0.6 -0.564425 -0.59174 -0.585074
-0.4 -0.753931 -0.7809 -0.768363
-0.2 -0.871391 -0.897987 -0.883683
0 -0.911217 -0.937778 -0.923342
0.2 -0.871391 -0.897987 -0.883683
0.4 -0.753931 -0.7809 -0.768363
0.6 -0.564425 -0.59174 -0.585074
0.8 -0.310608 -0.33375 -0.335713
1 0 0 0

Table 1 shows comparison of PM, HAM and OHAM
for a fix data

A=2B=02d=1
¢, =-0.5371148763117504

¢, =-0.03399665595169708.

It 1s obvious that the result of OHAM (second order)
is better than the method in reference [1].

Generralized Plane Couette Flow Problem: Consider
again fully-developed plane Poiseuille flow with the upper
plate moving with constant speed, {J. This flow 1s called
plane Couette-Poiseuille flow or general Couette flow. In
contrast to the previous problem, tlus flow 15 not
symmetric with respect to the centerline of the channel
and, therefore, having the origin of the Cartesian
coordinates on the centerlime 1s not convenient.
Therefore, the origin is moved to the lower plate. For this
flow the governing problem consists of Eq. (40) and
boundary conditions are:
u(0)=0, w2d) = U (55)
Preceding as before, the zeroth-order, first-order and
second order problems using OHAM are:

u" () -4=0, u(0)=0, u,2d)=U, (56)
with solution
A+ (y)rue "(y)eue "(v)
o s )Y ua "W+ A=0,  (57)

u(0) =0, w(2d) = 0,

1233

w," (V) - 1, ") - e " (v) - 20, Bl (Vouy"(v) u, ()

- B/ (0)) " " () uy" () - B () ()Y = 0,
(58)
u,(0) =0, uy(2d) = 0,
As we applied the OHAM in the previous section,
similarly in this case we follow the same steps to obtain
the zeroth-order, first-order and second-order solutions:

1 59
ua(y)iﬁ(AdyZ-ZAdzerUy) (39)

i (ya cl) = ﬁ('&{l]d{yﬁc; + Mzdeyﬁcz '6AdU2yﬁc;
+124°d"y fe, - 124°4°U v e, + 34 Uy e, (60)
847 d’ 37 Be, +4.47d ijﬁc[+2A3d2y2ﬁc[)
w{y.c,0,) =1/ 288" )) A(2d- y) y p{128° (3T
FHAU(-d+y) 24 & (24" -2dy+ i )| e,

(61)

+{164°d" (387 -3d y+ ' )(d* -d y+ 57 ) B

164" & U(d - y)(58° -6 d y+3)7 ) f+ 9U° (48 +17°p)
124dU(d-y)4d’ +3Up) 1248 (2d (24" - 2d y+ 57 )
U8 -10d y+ 537 ) B)) & +12d°(3U° +44dU(-d +y)

24 F(2d -2dy+y))c,)

Thus, the final expression for the OHAM solution up
to second order is:

i ye,e) =2—1d(Ad W -2A P y+ @}ﬁ(&ﬁf ;
&L A Ufe,-GAdLF yfc, + 124°dy e, - 124 AUy fc,
+ Uy e -1 &y o, +4 £dUY fo 24 &5 fe,)
{1 2880°)) A(20 -3) y {12 (3L + 44U )
2.4 & (28 -2dp+ e,
HI6Ld (38 - 3d y+ )@ -dy+ ) B
-164 & U(d-3)(5d -6dy+3)7) p+9UF (4 +L7B)
-2AdUd-y)(4d +3UB) 124 & (2 (2d° -2d y +y7)
+IP(8d -10dy+5 ) f))¢ +12d (3UF +4.4dU(~d+y)
124 & (24 -2dy+y)) ) (62)

Substituting Eq. (62) m Eq. (40), we obtam the
residual as:
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Table 2

¥ OHAM PM HAM

0 0 0 0

0.2 -0.222169 -0.238909 -0.236261

0.4 -0.376675 -0.403768 -0.398466

0.6 -0.456707 -0.492012 -0.485486

0.8 -0.457827 -0.500634 -0.496688

1 -0.379662 -0.430278 -0.431951

1.2 -0.226245 -0.286059 -0.29166

1.4 -0.00499515 -0.0751076 -0.0767076

1.6 0.275649 0.199168 0.211525

1.8 0.60996 0.546089 0.571189

2 1 1 1
R(z.q.e,)="(y)+ Bl (y)f '(z)=0 (D

For determination of constants (¢, i = 1,2), we apply
the procedure as in previous problem. For

A=2,p=02d=1U=1,
¢, =-0.643054, ¢, = -0.040055.

i(y) =y{-0816185+y-0298572 y(5415 +{-38+y) )

+0O551678(-2+ y) % (0484 +{-048+ 0266667 y) y

+00392305(333427 +(-2.57942+) y)( 178778 +(-1.12058 +) )}
(64)

Table 2 shows comparison of PM, HAM, OHAM For
a fix data. For

A=2,p=02d=1U=1¢~=
-0.643054, ¢, = -0.040055.

The expressions (54) and (64) are plotted mn figures
(1)-(2). Figure 1 and 2 show a comparison between the
results obtained using OHAM and the results obtained
by Siddiqui et @l. [1] who used PM and HAM for the same
problem.

0.0 F%

04_

uy

0.6

0.8

0.0

Fig. 1. Comparison between the results obtained from OHAM and Siddiqui et ol obtained from PM and HAM,
A=2,5=02,d=1 ¢=-05371148763117504, c,= -0.03399665595169708.

1.0T
08¢F
0.6
0.4
L
2 0.2F

OHAM
HAM

/]

0.0
0.2}
0.4}

Fig. 2: Comparison between the results obtained from OHAM and Siddiqui
=-0.643054,¢c, =-0.040055.

A=2B=02d=1U=1c¢,

1234

2.0

et al obtained from PM and HAM,
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0.01[
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GZhe e v v v oy wow | ovow o ey oy ¥
0.0 0.5 1.0

¥y
3: Residual R(y) given by (51)

Fig.

008
0.06
0.04
0.02

000 F

002

0.04

006

0.0 13 20

Fig. 4: Residual R(») given by (61)

3 and 4. we can observe the
accuracy of the solution obtained by the title method,

From Figures

which in both cases are quite good. The maximum
magnitude of the residual R(y) 13 0.045 for Poiseuille flow
while 0.08 for the generalized plane Couette flow, which
shows and proves the accuracy of the approximate
solutions in both cases.

CONCLUSIONS

In this paper, an Optimal Homotopy Asymptotic
Method is proposed for Couette flow; plug flow,
Poiseuille and generalized Couette flow using fourth grade
fluid, depending upon the relative motion of the plates.
The results are compared with the homotopy analysis
method and perturbation method and obtain satisfactory
results. The result can be more improved by increasing
the order.

This method provides us a convenient way to control
the convergence and we can easily adjust the desired
convergence regions. This technique is fast converging
to the exact solution and requires less computational
work. This confirms our belief that the efficiency of the
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OHAM gives it much wider applicability. Mathematica
software 18 used for symbolic derivations of some of the
equations.
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