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for Solving the Cauchy Reaction-diffusion Problem
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Abstract: In a recent paper, M.A. Noor et al. (Hindawi publishing corporation, Mathematical Problems in 
Engineering, Volume 2008, Article ID 696734, 11 pages, doi:10.1155/2008/696734) proposed the
Variational Homotopy Perturbation Method (VHPM) for solving higher dimentional initial boundary value 
problems. In this paper, we use the proposed method to obtain the solution of Cauchy reaction-diffusion
problem. Reaction-diffusion equations have special importance in engineering and sciences and constitute a 
good model for many systems in various fields. 
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INTRODUCTION

Reaction-diffusion equations describe a wide
variety of nonlinear systems in physics, chemistry,
ecology, biology and engineering [1-4]. Reaction-
diffusion equations are widely used as models for
spatial effects in ecology. They support three important 
types of ecological phenomena: the existence of a
minimal patch size necessary to sustain a population, 
the propagation of wavefronts corresponding to
biological invasions and the formation of spatial
patterns in the distributions of populations in
homogeneous environments.
       Reaction-diffusion equations can be analyzed by 
means of methods from the theory of partial differential 
equations and dynamical systems [5]. By a reaction-
diffusion, we mean an equation of the following form

( )txwwfwwt ,;,∇+∆=  (1)

The term ∆w is diffusion term and f (w,∇w;x,t) is 
the reaction term. More generally the diffusion term
may be of type A(w), where A is a second-order elliptic 
operator, which may be nonlinear and degenerate. In 
this paper, we consider the one-dimensional, time-
dependent reaction-diffusion equation

( ) ( ) ( ) ( )txwtxrtxwDtxw xxt ,,,, += (2)

( ) 2, Rtx ⊂Ω∈

Where

( ) ( ) ( ) ( )tx
x
wtxwtx

t
wtxw xxt ,,,,, 2

2

∂
∂=

∂
∂=

w is the concentration, r is the Reaction parameter and 
D>0 is the diffusion coefficient, subject to the initial or 
boundary conditions

( ) ( ) Rxxgxw ∈= ,0, (3)

( ) ( ) ( ) ( ) Rttftwtftw x ∈== ,,0,,0 10 (4)

The problem given by Eqs. (2) and (3) is called the 
characteristic Cauchy problem in the domain Ω=R×R+,
whilst the problem given by Eqs. (2) and (4) is called 
the non-characteristic Cauchy problem in the domain 
Ω  = R+×R [5].

In this paper, the Cauchy reaction-diffusion
equation shall be solved by Variation Homotopy
Perturbation Method (VHPM). The VHPM provides the
solution in a rapid convergent series which may lead 
the solution in a closed form. It is worth mentioning 
that the VHPM is applied with out any discretization, 
restrictive   assumption,  or  transformation  and  is  free 
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from round-off errors. Also the VHPM provides an 
analytical solution by using the initial conditions only 
and the boundary conditions can be used only to justify
the obtained result. Numerical results reveal that the
VHPM is easy to implement and reduces the
computational work to a tangible level while still
maintaining a very higher level of accuracy [6].

VARIATIONAL HOMOTOPY
PERTURBATION METHOD

To convey the basic idea of the variational
homotopy perturbation method, we consider the
following general differential equation

( )xgNyLy =+ (5)

where L is a linear operator, N is a nonlinear operator 
and ( )xg is an inhomogeneous term. According to 
variational iteration method [7-11], we can construct a 
correct functional as follows

( ) ( )xyxy nn =+1

( ) ( ){ }dgyNyL nn

x

−++ ∫ ~
0

(6)

 Where ( ) is a Lagrange multiplier [7-11] which 
can be identified optimally via the variational iteration 
method. The subscripts n denote the nth approximation, 

ny~  is considered as a restricted variation. That is

0~ =ny and (6) is called a correct functional. Now, 
we apply the homotopy perturbation method
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(7)

which is the variational homotopy perturbation method 
and is formulated by the coupling of variational
iteration method and Adomian’s polynomials.

The embedding parameter p∈[0,1] can be
considered as an expanding parameter [12-18]. The 

homotopy perturbation method uses the homotopy
parameter p as an expanding parameter [12-18] to 
obtain

+++==∑
∞

=
2

2
10

0

ypypyypf i
i

i (8)

If p→1, then (8) becomes the approximate
solution of the form

+++== → 2101lim yyyfy p (9)

A comparison of like powers of p gives solutions 
of various orders.

VHPM FOR CAUCHY 
REACTION-DIFFUSION EQUATION

In order to solve Eq. (2) with initial condition (3) 
by means of VHPM, we choose the initial
approximation

( ) ( )xgtxw =,0 (10)

and we consider

( ) ( )txwwL t ,= (11)

( ) ( ) ( ) ( )txwtxrtxwDwN xx ,,, −−= (12)

where L is a linear and N is a nonlinear operator. 
According to the variational iteration method [7-11], we 
can construct a correct functional as follows

( ) ( )txwtxw nn ,,1 =+

( ){ ( ) ( ),~,
0

xwDxw
xxnn

t

−+ ∫
( ) ( )}dxwxr n ,~,−

(13)

Where nw~ is considered as a restricted variation.
Making the above functional stationary, the Lagrange 
multiplier can be determined as 1−= , which yields 
the following iteration formula
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( ) ( ) { ( ),,,
0

1 xwtxwtxw
t

nnn ∫−=+

( ) ( ) ( )} dxwxrxwD nnxx
,,, −−

(14)

Applying the variational homotopy perturbation 
method, we have

02
2

10 wwpwpw =+++ 
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t

xxxxxx∫ ++++
0

2
2

10 
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(15)

Comparing the coefficient of like powers of p, we have

( ) ( )xgtxwp =,: 0
0

( ) ( ) dwxrdwDtxwp
tt

xx 0
00

01
1 ,,: ∫∫ +=

( ) ( ) dwxrdwDtxwp
tt

xx 1
00

12
2 ,,: ∫∫ +=

( ) ( ) dwxrdwDtxwp
tt

xx 2
00

23
3 ,,: ∫∫ +=



So we obtain the components which constitute
( )txw , , thus we will have

( ) +++= 210, wwwtxw

For later numerical computation, we let the expression

ϕ ( )txw
n

i
in ,

0
∑
=

=

(16)

to denote the n-term approximation to ( )txw , .

IMPLEMENTATION OF THE METHOD

        In this section, we determine the reliability of the 
VHPM for different cases of ( )txr , . For the sake of 
comparison, we take the same examp les as used in [5].

Example 1: Case r = constant. Taking 1=D  and 
1−=r , Eq. (2) recasts as the Kolmogorov-Petrovsly-

Piskunov (KPP) equation

( ) ( ) ( ) ( ) 2,,,,, Rtxtxwtxwtxw xxt ⊂Ω∈−=

(17)

subject to the initial and boundary conditions

( ) ( ) Rxxgxexw x ∈=+= − ,0,
(18)

( ) ( )tftw 01,0 ==
(19)

( ) ( ) Rttfetw t
x ∈=−= − ,1,0 1

(20)

To solve equation (17) by means of VHPM, we can 
take an initial approximation

( ) ( ) xexwtxw x +== −0,,0

Then by using the equation (15) we will have

xewpwpw x +=+++ −2
2

10

( )dwpwpwp
t

xxxxxx∫ ++++
0

2
2

10 

( )dwpwpwp
t

∫ +++−
0

2
2

10  (21)

Comparing the coefficient of like powers of p, we have

( ) xetxwp x += −,: 0
0
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Table 1: The numerical results for ϕ3 in comparison with the exact solution of w

tj |xi 0.1 0.2 0.3 0.4 0.5

0.1 4.0847e-007 8.1694e-007 1.2254e-006 1.6339e-006 2.0424e-006
0.2 6.4086e-006 1.2817e-005 1.9226e-005 2.5635e-005 3.2043e-005
0.3 3.1822e-005 6.3644e-005 9.5466e-005 1.2729e-004 1.5911e-004
0.4 9.8671e-005 1.9734e-004 2.9601e-004 3.9469e-004 4.9336e-004
0.5 2.3640e-004 4.7280e-004 7.0920e-004 9.4560e-004 1.2000e-003

                                              (a)            (b)

Fig. 1: Comparison between the (a) w(x,t) and (b) ϕ3 for the values of t=0 (0.1) 1, x = 0 (0.1) 1 for example 1

So we obtain the components which constitute
( )txw , , thus we will have

( ) ( ) ( ) ( ) +++= txwtxwtxwtxw ,,,, 210







 −+−+−+= − 432

!4
1

!3
1

!2
11 ttttxe x

The exact value of ( )txw ,  in a closed form is

( ) tx exetxw −− +=, (22)

as presented in [5].
In what follows, we present the absolute errors 

between ϕ3 and the exact solution in Table 1 for the 
values of t=0.1 (0.1) 0.5 and x=0.1 (0.1) 0.5. Also the 
behavior of the solution obtained by VHPM and the 
exact solution is illustrated in figure 1.

Example 2: Case ( )trr = . Taking 1=D and

( ) ttr 2= , Eq. (2) becomes

( ) ( ) ( ) ( ) 2,,,2,, Rtxtxwttxwtxw xxt ⊂Ω∈+=
(23)

subject to the initial and boundary conditions

( ) ( ) Rxxgexw x ∈== ,0,
(24)

( ) ( )tfetw tt
0

2

,0 == + (25)

( ) ( ) Rttfetw tt
x ∈== + ,,0 1

2

(26)

To solve equation (23) by means of VHPM, we can 
take an initial approximation
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( ) ( ) xexwtxw == 0,,0

Then by using the equation (15) we will have

xewpwpw =+++ 2
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Comparing the coefficient of like powers of p, we 
have
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So we obtain the components which constitute
( )txw , , thus we will have

( ) ( ) ( ) ( ) +++= txwtxwtxwtxw ,,,, 210
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The exact value of ( )txw , in a closed form is

Table 2: The numerical results for ϕ3 in comparison with the exact solution of w
tj |xi 0.1 0.2 0.3 0.4 0.5
0.1 6.8931e-006 7.6180e-006 8.4192e-006 9.3047e-006 1.0283e-005
0.2 1.6042e-004 1.7729e-004 1.9593e-004 2.1654e-004 2.3931e-004
0.3 1.2000e-003 1.3000e-003 1.4000e-003 1.6000e-003 1.7000e-003
0.4 5.1000e-003 5.6000e-003 6.2000e-003 6.9000e-003 7.6000e-003
0.5 1.7100e-002 1.8900e-002 2.0800e-002 2.3000e-002 2.5500e-002

                                              (a)                                                                                  (b)
Fig. 2: Comparison between the (a) w(x,t) and (b)ϕ3 for the values of t=0 (0.1) 1, x = 0 (0.1) 1 for example 2

( ) 2

, ttxetxw ++= (28)

as presented in [5].
In  what  follows,   we   present   the  absolute 

errors   between ϕ3   and   the   exact   solution  in 
Table  2  for the values of t=0.1 (0.1) 0.5 and x=0.1 

(0.1)  0.5. Also  the  behavior  of  the  solution
obtained by VHPM and the exact solution is illustrated 
in figure 2.

Example 3: Case ( )xrr = . Taking 1=D  and

( ) 241 xxr −−= , Eq. (2) becomes
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( ) ( ) ( ) ( )txwxtxwtxw xxt ,41,, 2+−=

( ) 2, Rtx ⊂Ω∈
                                                                                  (29)

subject to the initial and boundary conditions

( ) ( ) Rxxgexw x ∈== ,0,
2

            (30)

( ) ( )tfetw t
0,0 == (31)

( ) ( ) Rttftwx ∈== ,0,0 1 (32)

To solve equation (29) by means of VHPM, we can 
take an initial approximation

( ) ( ) 2

0,,0
xexwtxw ==

Then by using the equation (15) we will have

2
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Comparing the coefficient of like powers of p, we have
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So we obtain the components which constitute 
( )txw , , thus we will have

( ) ( ) ( ) ( ) +++= txwtxwtxwtxw ,,,, 210
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The exact value of ( )txw ,  in a closed form is

( ) 2

, xtetxw +=
(34)

as presented in [5].
In what follows, we present the absolute errors 

between ϕ3 and the exact solution in Table 3 for the 
values of t=0.1 (0.1) 0.5 and x=0.1 (0.1) 0.5. Also the 
behavior of the solution obtained by VHPM and the 
exact solution is illustrated in figure 3.

Example 4: Case ( )txrr ,= . Taking 1=D  and 

( ) 224, 2 −+−= txtxr , Eq. (2) becomes 

( ) ( ) 2

0
0

2

0
01

1 41,: x
tt

etdwxdwtxwp
xx

=+−= ∫∫

Table 3: The numerical results for ϕ3 in comparison with the exact solution of w
tj |xi 0.1 0.2 0.3 0.4 0.5
0.1 4.2941e-006 4.4249e-006 4.6518e-006 4.9891e-006 5.4589e-006
0.2 7.0123e-005 7.2258e-005 7.5963e-005 8.1471e-005 8.9143e-005
0.3 3.6241e-004 3.7345e-004 3.9260e-004 4.2106e-004 4.6072e-004
0.4 1.2000e-003 1.2000e-003 1.3000e-003 1.4000e-003 1.5000e-003
0.5 2.9000e-003 3.0000e-003 3.2000e-003 3.4000e-003 3.7000e-003
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                                                (a)                                                                             (b)
Fig. 3: Comparison between the (a) w(x,t) and (b) ϕ3 for the values of t=0 (0.1) 1, x=0(0.1) 1 for example 3

Table 4: The numerical results for ϕ3 in comparison with the exact solution of w

tj |xi 0.1 0.2 0.3 0.4 0.5

0.1 4.2170e-010 4.3454e-010 4.5682e-010 4.8994e-010 5.3608e-010
0.2 1.0861e-007 1.1191e-007 1.1765e-007 1.2618e-007 1.3807e-007
0.3 2.8117e-006 2.8973e-006 3.0459e-006 3.2667e-006 3.5743e-006
0.4 2.8488e-005 2.9355e-005 3.0860e-005 3.3098e-005 3.6215e-005
0.5 1.7297e-004 1.7824e-004 1.8738e-004 2.0096e-004 2.1989e-004

                                                 (a)                                                                            (b)

Fig. 4: Comparison between the (a) w(x,t) and (b) ϕ3 for the values of t=0 (0.1) 1, x=0 (0.1) 1 for example 4

( ) ( ) ( ) ( )txwtxtxwtxw xxt ,224,, 2 +−−=

( ) 2, Rtx ⊂Ω∈
                                                                                  (35)

subject to the initial and boundary conditions

( ) ( ) Rxxgexw x ∈== ,0,
2

           (36)

( ) ( )tfetw t
0

2

,0 == (37)

( ) ( ) Rttftwx ∈== ,0,0 1 (38)

To solve equation (35) by means of VHPM, we can 
take an initial approximation

( ) ( ) 2

0,,0
xexwtxw ==

Then by using the equation (15) we will have

2

2
2
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xewpwpw =+++ 

( )dwpwpwp
t

xxxxxx∫ ++++
0

2
2

10 

( )( ) dwpwpwxp
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∫ ++++−−
0

2
2

10
2 224 

(39)
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Comparing the coefficient of like powers of p, we have

( ) 2

,: 0
0 xetxwp =
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( ) ( ) 28

0
3

2

0
34
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1224,: x

tt
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xx

=+−−= ∫∫


So we obtain the components which constitute
( )txw , , thus we will have

( ) ( ) ( ) ( ) +++= txwtxwtxwtxw ,,,, 210







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1

!3
1
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The exact value of ( )txw , in a closed form is

( ) 22
, xtetxw +=

(40)

as presented in [5].
In what follows, we present the absolute errors 

between ϕ3 and the exact solution in Table 4 for the 
values of t=0.1 (0.1) 0.5 and x=0.1 (0.1) 0.5. Also the 
behavior of  the solution obtained by VHPM and the 
exact solution is illustrated in figure 4.

CONCLUSION

In this paper, Variational Homotopy Perturbation 
Method (VHPM) has been successfully applied to time-
dependent reaction-diffusion equation. The proposed 
method is successfully implemented by using the initial 
conditions only. It is observed that the proposed scheme 
exploits full advantage of variational iteration method 
and the homotopy perturbation method.

All the examples show that the results of the present 
method are in excellent agreement with those of exact 
solutions and the obtained solutions are shown
graphically. Finally, we conclude that the VHPM may 
be considered as a nice refinement in existing numerical 
techniques. The computations in this paper are done by 
MATLAB software.
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