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Abstract: This paper considers the effect of smart Numerov generalized alternating group explicit 
(SNAGE-PR (2)) scheme in solution of two point boundary value problems  also we have shown that the 
method is convergent. Here, it is shown that, by using this scheme the accuracy of solution is increased and 
most importantly the time of computation is decreased. Numerical results confirm the efficiency of our 
approach.
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INTRODUCTION

Two point non-linear boundary value problems
frequently occur in many complex mathematical
modeling problems in science and engineering in which
the solution of a linear or non-linear ordinary
differential equation is required where the boundary
conditions are given at two different points [1]. There
are a variety of numerical strategies which can be
applied i.e. [5, 7, 8]. Finite difference approximations 
have been used for solving the two-point boundary 
value problems:

-U q(x)U f(x) a x b′′ + = ≤ ≤ (1.1)

subject to boundary conditions,

U(a) , U(b)= α = β (1.2)

where α, β are real constants and q (x), f (x) real
continuous functions with q (x)≥0.
We place a uniform mesh of size,

(b a)
h

(m 1)
−

=
+

(1.3)

and the mesh points of the discrete problem are 
given by

ix a ih, 0 i m 1= + ≤ ≤ + (1.4)

Based on finite Taylor's series expansions and 
applying finite difference approximations to the
equation (1.1) results as follows:

2
i 1 i i i 1 iu 2 gu u h f , 1 i m− +− + − = ≤ ≤ (1.5)

where gi = 1 + 0.5qih2 and the local truncation error is 
of order O (h2). Equation (1.5) in matrix notation can be 
written as:

Au = b (1.6)
where

T
1 2 m 1 mu [u ,u , . . . , u ,u ]−= (1.7)

and
2 2 2 2 T

1 2 m 1 mb [ h f , h f , . . . , h f , h f ]−= α + β +

For solution of equations (1.6) SMAGE method is
proposed although by using this method time
consumption is reduced but truncation error of this 
method is of order O (h2) [3]. Later Evans and Ahmad
introduced NUMAGE method in which the truncation 
error of this method is of order O (h4) but this method 
requires high time consumption [4].

In this paper, our scheme is based on the
combination AGE-PR (2) and SMAGE methods and 
using of the Numerov's formula for the two-point
boundary value problems subject to Dirichlet boundary 
conditions.

In section 2, we briefly describe generalized AGE 
method. In section 3, we introduce Numerov-AGE-PR
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(2) method also we have shown that the method is 
convergent and in section 4, we introduce our scheme,
smart Numerov AGE-PR (2). Finally, several examples 
are presented which confirm the efficiency of the
presented scheme.

GENERALIZED AGE METHOD

Evans [2] has  introduced the alternating group 
explicit (AGE) method for the iterative solution of
systems of linear equation, where Am×m is tri-diagonal
matrix:

1 1

2 2 2

m 1 m 1 m 1

m m

2g c
a 2g c

A
a 2g c

a 2g
− − −

 
 
 
 =
 
 
 
 

   (2.1)

The AGE iterative method consists of splitting the 
matrix A into the form

A = G1+G2 (2.2)
where
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1 4 4
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(2.3)
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and m is even

1
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3 3
1

m 1 m 1

m m

g
g c
a g

G

g c
a g

− −
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
(2.5)

1 1

2 2
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m 1 m 1
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g c
a g

G
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a g
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− −
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
(2.6)

where m is odd. For any iteration parameter r 0 , the 
AGE iterative scheme is as follows:

( k 1 / 2 ) (k)
1 2(rI G )u b (rI G )u++ = + − (2.7)

( k 1 ) ( k 1 / 2 )
2 1(rI G )u b (rI G )u+ ++ = + − (2.8)

The iteration matrix is given by

1 1
r 2 1 1 2T (rI G ) (rI G )(rI G ) (rI G )− −= + − + − (2.9)

By using a similarity transformation, we have

1 1
r 1 1 2 2T (rI G )(rI G ) (rI G )(rI G )− −= − + − + (2.10)

Since G1 and G2 matrices are positive definite, this
implies their eigen-values are real and positive, i.e.

i i i
1

g (a c ),i 1,2,...,m
2

+ =

It is  shown that the AGE scheme is convergent [2]. The
modification of equation (2-8) (AGE-PR (2) scheme) 
[3] is  as follows:

( k 1 / 2 ) (k)
1 2(rI G )u b (rI G )u++ = + − (2.11)

( k 1 ) ( k 1 / 2 ) (k)
2 2(rI G )u 2ru (rI G )u+ ++ = − − (2.12)

for any r 0 . By using equation (2.7) to express
G1u(k+1/2) in terms of G2u(k), thereby saving on the 
evaluation of the right hand side vectors, the AGE-PR
(2) scheme can be written in explicit form:

( k 1 / 2 ) 1 (k)
1 2u (rI G ) [b (rI G )u ]+ −= + + − (2.13)

( k 1 ) 1 ( k 1 / 2 ) ( k )
2 2u (rI G ) [2ru (rI G )u ]+ − += + − − (2.14)

and the iteration matrix is given by:

1 1
r 2 1 2T (rI G ) [2r(rI G ) I](rI G )− −= + + − − (2.15)

The consistency and convergence of AGE-PR (2)
scheme is proved [3]. Since G1 and G2 are
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non-symmetric, for the convergence, we need to
show r 2

T 1 . For this scheme,

1 1
r 2 1 22 2

T (rI G ) [2r(rI G ) I](rI G )− −= + + − − (2.16)

Let µ and ν be the respective eigen-values of G1
and G2. Since all the eigen-values of G1 and G2 are 
positive, then we have from (2.16)

1 1
r 2 1 22 2

,

T (rI G ) [2r(rI G ) I](rI G )

1 2r
( 1)(r )

(r ) (r )

(r )(r )
max 1

(r )(r )

− −

µ ν

= + + − −

= − − ν
+ ν + µ

− µ − ν
=

+ µ + ν


(2.17)

Thus, the AGE-PR (2) scheme is convergent.

NUMEROV-AGE-PR (2) METHOD

With the usual centered three point approximation, 
the truncation error is of order O (h2). To increase
accuracy in the numerical solution, the well known 
recurrence solution is called the Numerov formula [4] is
applied which given by:

2
i 1 i i 1 i 1 i i 1

1
u 2u u h (u 10u u )

12− + − +′′ ′′ ′′− + = + + (3.1)

The finite difference Eq. (3.1) has been shown
to have the truncation error of O (h4). We write
Eq. (1.1) as

U q(x)U f(x)′′ = − (3.12)

Let i iu U ( x )′′ ′′= , i iq q ( x )= and fi = f (xi) then we
have i i i iu q u f′′ = − ,By substituting (3.2) in (3.1):

i i 1 i i i i 1 ia u 2gu c u w− ++ + = (3.3)
where

2
i i 1

2
i i

2
i i 1

1
a 1 h q

12
5g 1 h q

12
1

c 1 h q
12

−

+

= − +

= +

= − +

and
2

i i 1 i i 1
1

w h (f 10f f ). 1 i m
12 − += + + ≤ ≤

The Eq. (3.3) can be written in the matrix form

Au = b
where

T
1 2 m 1 mu [u ,u , . . . , u ,u ]−=

and
T

1 1 2 m 1 m mb [w a , w ,...,w ,w c ]−= − −

The matrix A is given by:

1 1

2 2 2

m 1 m 1 m 1

m m

2g c
a 2g c

A
a 2g c

a 2g
− − −

 
 
 
 =
 
 
 
 

   (3.4)

where G1 and G2 are introduced in section 2. It can be 
shown that for the non-symmetric matrices, the NAGE-
PR (2) as same as AGE method [4] is convergent 
provided that all the eigen-values of the matrices are 
positive.

The eigen-values of G1 and G2 are λ1 = gi for i = 
1,m and those which are given by the determinant
equation

i i

i 1 i 1

g c
det 0

a g+ +

λ − 
= λ − 

which has the roots

2
2 i i 1 i i 1 i 1 i

1 1
(g g ) (g g ) 4a c

2 2+ + +λ = + − − +

and
2

3 i i 1 i i 1 i 1 i
1 1

(g g ) (g g ) 4a c
2 2+ + +λ = + + − +

Both λ1 and λ3 are positive and we will show that 
λ2 is also positive. This can be shown as follows:

2
i i 1 i i 1

2 4 2
i i 1 i i 1

2 4
i 1 i i i 1 i i 1

1 5
(g g ) 1 h (q q )

2 24
25

(g g ) h (q q )
144

1 1
4a c 4 h (q q ) h q q

3 36

+ +

+ +

+ + +

+ = + +

− = −

= − + +

By neglecting all terms which contain h4, then we have

2 2
i i 1 i 1 i i i 1

1 1 1(g g ) 4a c 4 h (q q ) 1
2 2 3+ + +− + = − + ≤

Hence, λ2 is positive. Therefore NAGE-PR (2)
method  is convergent. Now, by using the NAGE-PR (2)
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method, we can determine u(k+1) in two steps from the
explicit form of (2.11) and (2.12). Assume that m is 
even. In programming the AGE method, we need to 
store the arrays gi, αi, βi, ci and ai, but not di as this 
value may be assigned as a variable. We now write the 
algorithm for the Numerov-AGE-PR (2) formula:

Algorithm 3.1: The NAGE-PR (2) method for the
model problem (1.1)

1. Set (k)
i 1 mu 0,i 0,...,m 1,a 0,c 0= = + = =

2. To compute u(k+1/2). Set i = 1

While i≤m-1, compute

( k ) (k)
1 i i i 1 i i

( k ) (k)
2 i 1 i 1 i 1 i 1 i 2

i i 1 i 1 i

( k 1 / 2 )
i i 1 1 i 2
( k 1 / 2 )
i 1 i 1 1 i 2

r b a u u

r b u c u
d 1/( a c )

u ( r c r ) d

u ( a r r )d
i i 2.

−

+ + + + +

+ +

+
+

+
+ +

= − + β

= +β −
= α α −

= α −

= − + α
= +

3. To compute u(k+1). Set i = 2

( k 1 ) ( k 1 / 2 ) (k)
1 1 1 1 1u (2ru u )/+ += + β α

while i≤m-2, compute

( k 1 / 2 ) (k) (k)
1 i i i i i 1

( k 1 / 2 ) (k) ( k )
2 i 1 i 1 i i 1 i 1

i i 1 i 1 i

( k 1 )
i i 1 1 i 2
( k 1 )
i 1 i 1 1 i 2

( k 1 ) ( k 1 / 2 ) (k)
m m m m m

r 2ru u c u

r 2ru a u u
d 1/( a c )

u ( r c r ) d

u ( a r r ) d
i i 2.

u (2ru u ) /

+
+

+
+ + + +

+ +

+
+

+
+ +

+ +

= −β +

= + −β
= α α −

= α −

= − + α
= +

= −β α

4. Repeat step 2 and step 3 until convergence is 
achieved.

SMART NUMEROV AGE-PR (2)
(SNAGE-PR (2)) SCHEME

Evans and Ahmad [3] introduced a same form of
the AGE method, which is called the smart AGE
(SMAGE) method. In this section, we will consider an 
efficient form of the SMAGE method which is called 
the smart Numerov generalized alternating group
explicit (SNAGE-PR (2)) scheme.

Consider two point boundary value problem (1.1) 
subject to the boundary condition, by applying
Numerov formula to equation (1.1), we have

i i 1 i i i i 1 ia u 2gu c u w− ++ + = (4.1)
Where

2 2 2
i i 1 i i i i 1

2
i i 1 i i 1

1 5 1a 1 h q , g 1 h q , c 1 h q ,
12 12 12

1
w h (f 10f f ),1 i m

12

− +

− +

= − + = + = − +

= + + ≤ ≤
(4.2)

The equation (4.1) can be written in the matrix
form Au = b, where matrix A is introduced in (3.4).
Now by using AGE-PR (2) method, we can determine 
u(k+1) in two steps from the explicit form of (2.13) and
(2.14). Assume m be even for any r 0 , then the block 
sub-matrices (rI+G1), (rI+G2), (rI-G1) and (rI-G2) have
the form

i i i i

i 1 i 1 i 1 i 1

c c
G andG

a a+ + + +

α β −   
= =   α − β   

  (4.3)

where, αi = r+g and βi = r-gi.. The inverse of G is given 
by

i 1 i1
i

i 1 i

c
G d

a
+−

+

α − 
=  − α 

 (4.4)

where
i i i 1 i 1 id 1/( a c ), i 1,...,m/2+ += α α − = (4.5)

We will predict that this new scheme save time as 
the idea involved is  eliminating evaluating two similar 
terms on the right hand sides of the AGE-PR(2) scheme 
and also, the truncation error is of order O(h4). The
two similar terms in (2-11) and (2-12) equations is
(rI-G2)u(k) and we let this term to be φ. The evaluation
and saving of φ depends on whether the problem is 
linear or non-linear. We expect SNAGE-PR(2) scheme 
for linear problems  to save two multiplications and one
addition for every iteration, while for non-linear
problems it is expected to save one multiplication and 
one addition.

The SNAGE-PR (2) algorithm where the values of
gi, ci, ai and wi is introduced in section 3 are as follows:

1. Set (k)
i 1 mu 0 , i 0,...,m 1,a 0,c 0= = + = =

2. To compute gi, αi and βi
For i = 1 to m
Compute gi, αi = r+gi and βi = r-gi

3. To compute φ = (rI-G2)u(k) set i = 1
while i≤m-1, compute

(k) (k)
i i i 1 i i

(k) (k)
i 1 i 1 i 1 i 1 i 2

c u u

u a u
i i 2

−

+ + + + +

φ = − +β

φ =β −
= +
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4. To compute u(k+1/2). Set i=1
while i≤m-1, compute

1 i i

2 i 1 i 1

i i 1 i 1 i
( k 1 / 2 )
i i 1 1 i 2
( k 1 / 2 )
i 1 i 1 1 i 2

r b
r b
d 1/( a c )

u ( r c r ) d

u ( a r r )d
i i 2

+ +

+ +

+
+

+
+ +

= + φ
= + φ

= α α −

= α −

= − + α
= +

5. For i = 1,2,…,m compute φi = -φi+2rui
(k+1/2)

6. To compute u(k+1)

( k 1 )
1 1 1u /+ = φ α

While i≤m-2
i i 1 i 1 i

( k 1 )
i i 1 i i i 1

( k 1 )
i 1 i 1 i i i 1

( k 1 )
m m m

d 1/( a c )

u ( c )d

u ( a )d
i i 2.

u / .

+ +

+
+ +

+
+ + +

+

= α α −

= α φ − φ

= − φ + α φ
= +

= φ α

7. Repeat step 2 and step 6 until convergence is 
achieved.

It can be noticed that for linear problems, the
values of gi, αi and βi are unchanged for each iteration, 
so these values can be computed outside of the iteration 
loop, while for non-linear problems, the values of gi,
αi and βi varies at every iteration. Therefore, the
computations for these values must be kept within
the iteration loop. Consequently, the in termediate
computation of φi must also be carried out within
the loop.

NUMERICAL EXPERIMENTS

In this section, we experimentally investigate the 
SNAGE-PR (2) scheme on 3 problems. The obtained
results  are presented as follows. Each problem will be
concerned with the speed (CPU time) and the number 
of iterations. Also, for showing the accuracy of each 
problem, we show in following tables in spatial case,
truncation error of approximate solutions and exact
solutions. The time is measured initially from the
initialization of u(0) until the solution converges to u(k),
where k is the numb er of iterations. The numerical 
results are carried out to a tolerance 10−7. In Table 1, 3 
and 5, we show the truncation error of SMAGE and 
SNAGE-PR (2) schemes for m = 20. Also, in Table 2,
4 and 6, we compare the CPU time for different
schemes. The results show the agreement between the 

Table 1: Truncation error of test 1 for m = 20

xi Exact solution SMAGE SNAGE-PR(2)

0.05 0.0334514 2.392132620e-06 5.364835381e-10
0.14 0.1010901 7.056703549e-06 6.159778243e-10
0.24 0.17094315 1.136600085e-05 2.417612333e-09
0.33 0.2445091 1.507634138e-05 4.343818055e-09
0.43 0.32332021 1.793298953e-05 5.116507495e-09
0.52 0.40895636 1.966500044e-05 2.906721475e-09
0.62 0.50305937 1.997921351e-05 3.848415031e-09
0.71 0.60734791 1.855304343e-05 1.473337063e-08
0.81 0.72363312 1.502563331e-05 2.438709568e-08
0.9 0.85383503 8.973926487e-06 4.968759575e-09

Table 2: The CPU time taken of test 1 for m=20

N iter AGE-PR (o2) NAGE-PR (2) SNAGE-PR (2)

40 117 0.016 0.016 0.000
80 227 0.188 0.219 0.016
160 539 0.922 1.047 0.157
320 1225 4.547 4.828 1.032
640 2710 20.393 20.893 8.845
1280 5971 106.936 105.030 70.522

Table 3: Truncation error of test 2 for m=20

xi Exact solution SMAGE SNAGE-PR(2)

2.05 0.00946441 1.522625180e-06 8.693270118e-09
2.14 0.02513426 3.801252304e-06 3.707214737e-08
2.24 0.03666715 5.226231900e-06 6.401131418e-08
2.33 0.04427736 5.970508739e-06 8.886972230e-08
2.43 0.04814557 6.164594261e-06 1.098716873e-07
2.52 0.0484252 5.911050214e-06 1.277883651e-07
2.62 0.04524732 5.248581249e-06 1.023458561e-07
2.71 0.03872463 4.281171425e-06 7.568308488e-08
2.81 0.02895455 3.058736949e-06 4.900061859e-08
2.9 0.01602171 1.621570964e-06 2.394452103e-08

computational work, with the CPU time and the order 
of accuracy for each scheme.

Test 1: Consider

U U x, 0 x 1
U(0) 0, U(1) 1
′′− + = − ≤ ≤

= =
(5.1)

The exact solution to this problem is given by

x x
2

2e
U(x) (e e ) x

e 1
−= − −

−
(5.2)

Test 2: Consider
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Table 4: The CPU time taken of test 2 
N iter AGE-PR (2) SMAGE-PR (2) NAGE-PR (2) SNAGE-PR (2)
40 86 0.015 0.000 0.016 0.000
80 203 0.251 0.016 0.322 0.031
160 476 1.000 0.172 1.115 0.172
320 1063 4.654 0.985 5.989 1.000
640 2318 23.298 7.845 25.443 7.844
1280 5030 98.776 59.880 114.255 63.240

Table 5: Truncation error of test 3 for m=20
xi Exact solution SMAGE SNAGE-PR (2)
0.05 1.00113314 1.35428620e-05 6.703152255e-09
0.14 1.01015208 3.219603907e-05 1.548261519e-10
0.24 1.02794422 4.701081702e-05 3.947242089e-09
0.33 1.05402185 5.655029950e-05 5.030522976e-09
0.43 1.08766258 6.084489038e-05 2.700470625e-08
0.52 1.12792037 6.025606521e-05 3.521910785e-08
0.62 1.17363989 5.511044565e-05 2.837088631e-08
0.71 1.22347413 4.591552883e-05 3.684526129e-08
0.81 1.27590511 3.318848197e-05 5.938221692e-09
0.9 1.32926725 1.764767009e-05 3.792957060e-10

Table 6: The CPU time taken of test 3
N iter AGE-PR (2) SMAGE-PR (2) NAGE-PR (2) SNAGE-PR (2)
40 127 0.032 0.016 0.046 0.015
80 303 0.266 0.031 0.266 0.032
160 710 1.359 0.219 1.155 0.203
320 1606 6.407 1.328 5.727 1.344
640 3553 33.129 12.298 30.347 12.752
1280 7845 191.205 104.183 190.653 104.090

2

2 1
U U , 2 x 3

x x
U(2) 0, U(3) 0

′′ = − ≤ ≤

= =
(5.3)

The exact solution to this problem is given by

21 36
U(x) (19x 5x )

38 x
= − − (5.4)

Test 3: Consider

U U 2cosx, 0 x 1′′ = − + ≤ ≤ (5.5)

The exact solution to this problem is given by

U(x) cosx xsinx= + (5.6)

CONCLUSIONS

In this paper, we applied the idea of SMAGE
method [3] and combination of SMAGE method
with AGE-PR (2) scheme. Our main approach focused

on convergence of scheme and also we have shown 
that our scheme SNAGE-PR (2) is fast and more
accurate. The SNAGE-PR (2) method is shown to be 
numerically stable when using the Numerov
formula in order to attain a greater accuracy. Also,
the significant point our scheme is the capable on 
working with two parameters. The SNAGE-PR (2) is 
simple to implement and efficient in terms of CPU
time. Finally, the numerical results show that the
greater accuracy is achieved when using the Numerov
formula.
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