
World Applied Sciences Journal 7 (Special Issue of Computer & IT): 45-53, 2009
ISSN 1818-4952
© IDOSI Publications, 2009

Corresponding Author: Dr. Mansour Sheikhan, P.O. Box 11365/4435,
Post-Graduate Center, South Tehran Branch, Islamic Azad University, Iran

45

Fast Neural Intrusion Detection System Based on
Hidden Weight Optimization Algorithm and Feature Selection

Mansour Sheikhan and Amir Ali Sha'bani

Department of Electrical Engineering, Islamic Azad University, South Tehran Branch, Tehran, Iran

Abstract: Intrusion detection is known as an essential component to secure the systems in information and
communication technology (ICT). In this paper, two mechanisms are used to achieve a fast intrusion
detection system (IDS): 1) the training speed of neural attack classifier is improved by using output weight
optimization-hidden weight optimization (OWO-HWO) training algorithm, 2) a feature relevance analysis
is performed to decrease the number of input features and size of neural classifier. Experimental results
show that the proposed system improves classification rates, especially for remote-to-local (R2L) attack
category and is effective in terms of detection rate (DR) and cost per example (CPE). False alarm rate
(FAR) of the proposed system is comparable with other intrusion detection systems, as well.

Key words: Intrusion detection • neural model • fast training • feature selection

INTRODUCTION

Intrusion detection is known as an essential
component to secure the systems in information and
communication technology (ICT). To coordinate and
define a common framework for intrusion detection
system (IDS), a general architecture is defined by
Intrusion Detection Working Group (IDWG). This
architecture is based on four functional modules: Event
(E), Database (D), Analysis (A) and Response (R) [1].

Information events are acquired by the E blocks
and based on the type of information source, IDS may
be either host-based or network-based. Host-based IDS
examines data held on individual computers that serve
as hosts and network-based IDS examines data
exchanged between computers. The D blocks store
information from E blocks for subsequent processing.
The A blocks are processing modules for analyzing
events and detecting potential hostile behavior. Based
on the type of analysis carried out, IDS may be misuse-
based [2, 3] or anomaly-based [4, 5]. The R block
executes a response, if any intrusion occurs.

User's activities are compared with the known
behaviors of attackers attempting to penetrate a system
in misuse-based IDS. The detection techniques that are
used in misuse-based IDS can be classified into three
main categories: statistical-based [6], knowledge-based
[7, 8] and machine learning (e.g. Bayesian networks
[9], artificial neural networks (ANNs) [3, 10-13], fuzzy
logic [14], genetic algorithms [15], clustering [16],
decision trees [17, 18] and hybrid systems [19-21]).

On the other hand, anomaly-based IDS seeks to
detect activities that vary from established patterns
for users and their detection techniques can also be
classified into three main categories: statistical-based
[22], knowledge-based [1] and machine learning (e.g.
Bayesian networks [23], Markov models [24], ANNs
[25, 26], fuzzy logic [14, 27], genetic algorithms [28]
and clustering and outlier detection [29]).

In 1999, recorded network traffic from the Defense
Advanced Research Project Agency (DARPA) dataset
[30] was summarized into network connections with 41
features per connection. This formed the benchmark
provided by the international knowledge discovery and
data mining group (KDD) [31]. There are four main
categories of attacks given in the KDD 99: denial-of-
service (DoS), probe, remote-to-local (R2L) and user-
to-root (U2R).

In this paper, a network-based IDS is proposed for
misuse detection in which two mechanisms are used
to improve the training speed and performance of a
neural IDS. The first mechanism is output weight
optimization-hidden weight optimization (OWO-HWO)
algorithm, in which many simple error functions are
minimized in the training phase [32, 33]. As the second
mechanism, a feature relevance analysis is used to
decrease the number of applied input features to neural
classifier.

So, by reducing the size of ANN and improving its
training speed and convergence, a fast IDS is achieved
which is effective in terms of detection rate (DR) and
false alarm rate (FAR), as well.

World Appl. Sci. J., 7 (Special Issue of Computer & IT): 45-53, 2009

46

The remainder of this paper is organized as
follows. Section 2 provides the KDD dataset details.
The foundations of OWO-HWO and the method of
feature ranking are described in Section 3. Simulation
and experimental results are discussed in Section 4.
Conclusions are also drawn in Section 5.

KDD DATASET

The KDD dataset consists of three components:
"Whole KDD", "Corrected KDD" and "10% KDD"
(Table 1).

There are multiple attack types for each main
attack category. Table 2 lists the attack categories along
with the attack types in the "10% KDD" dataset.

The analysis in this paper is performed on the
"10% KDD" dataset. It is reminded that each
connection in KDD is characterized by 41 features
(listed in Appendix A). These features are grouped into
four categories: basic features, content features, time-
based traffic features and host-based traffic features.

Basic features can be derived from packet headers
without inspecting the payload. In the second category
of features, domain knowledge is used to assess the
payload of the original transmission control protocol
(TCP) packets. Time-based traffic features are designed
to capture properties that mature over a two-second
temporal window. Host-based traffic features utilize a
historical window estimated over the number of
connections, instead of time. Therefore, they are
designed to assess attacks which span in intervals
longer than 2 seconds.

OWO-HWO ALGORITHM
AND FEATURE RANKING

A critical problem in multilayer perceptron (MLP)
neural networks has been the long training time
required. Several fast training techniques, that require
the solution of sets of linear equations, have been
devised [34, 35].

In output weight optimization-backpropagation
(OWO-BP), linear equations are solved to find output
weights and backpropagation is used to find hidden
weights [36]. Unfortunately, backpropagation is not a
very effective method for updating hidden weights [37].

A non-batching approach for finding all the MLP
weights, by minimizing separate error functions for
each hidden unit, is proposed in [32]. Although this
technique is more effective than backpropagation, it
does not use OWO to find the output weights optimally.
The idea of minimizing a separate error function for
each hidden unit is adapted to find the hidden weights
and have termed as hidden weight optimization (HWO)
[36].

Table 1: Number of samples in KDD 99 datasets

KDD dataset DoS Probe R2L U2R Normal

Whole 3883370 41102 1126 52 972780
Corrected 229853 4166 16347 70 60593
10% 391458 4107 1126 52 97277

Table 2: Attack types in "10% KDD" dataset

Category Type

DoS smurf, neptune, back, teardrop, pod, land
Probe satan, ipsweep, portsweep, nmap
R2L warezclient, guess_passwd, warezmaster,

imap, ftp_write, multihop, phf, spy
U2R buffer_overflow, rootkit, loadmodule, perl

In this paper, OWO-HWO algorithm is used as a
superior technique in terms of convergence to standard
OWO-BP. In this section, the notations and error
functions in a MLP network are reviewed first and then
the OWO-HWO algorithm is described.

In a MLP, if the jth unit is a hidden unit, then the
net input netp(j) and the output activation Op(j) for the
pth training pattern are:

p p
i

net (j) w(j,i).x (i)=∑ (1)

p pO (j) f(net (j))= (2)

where the ith unit is in any previous layer and w(j,i)
denotes the weight connecting the ith unit to the jth
unit. For the k th output unit, the net input netop(k) for
the pth training pattern and the output activation
Oop(k), with the linear property assumption of the
output units, are:

op o p
i

net (k)= w (k,i).O (i)∑ (3)

op opO (k)=net (k) (4)

where wo(k,i) denotes the output weight connecting the
ith unit to the k th output unit.

In order to train a neural network in batch mode,
the error for the k th output unit is defined as:

vN
2

p op
v p=1

1
E(k)= [T (k)-O (k)]

N ∑ (5)

in which Nv is the number of training patterns
{(xp, Tp)}.

World Appl. Sci. J., 7 (Special Issue of Computer & IT): 45-53, 2009

47

In this paper, the conjugate gradient approach is
used to minimize E(k) [36]. For hidden weight
changes, it is desirable to optimize the hidden weights
by minimizing separate error functions for each
hidden unit. By minimizing many simple error
functions, instead of a large one, it is hoped that the
training speed and convergence can be improved. The
desired hidden net function can be approximated by a
current net function plus a net change. That is, for jth
unit and pth pattern, a desired net function can be
constructed as [32]:

pd p pnet (j)=net (j)+Zd (j) (6)

where Z is the learning factor and dp(j) for output units
and hidden units are as follows, respectively:

p j p pd (j)=f(net).[T (j)-O (j)]′ (7)

p j p
n

d (j)=f(net). d (n)w(n,j)′ ∑ (8)

Similarly, the hidden weights can be updated as:

w(j,i) w(j,i)+Z.e(j,i)← (9)

where e(j,i) is the weight change and serves the same
purpose as the negative gradient in backpropagation.
By defining an objective function in terms of mean
squared error (MSE) for the jth unit as:

vN
2

d p p
p=1 i

E (j)= [d (j)- e(j,i).O (i)]∑ ∑ (10)

and taking the gradient of E (j) with respect to the
weight changes and setting it to zero, the following
linear equations are achieved:

oo
i

- E
e(j,i).R (i,m)=

w(j,m)
∂

∂∑ (11)

where
vN

oo p p
p=1

R (i,m)= O (i).O (m)∑ (12)

The steps of OWO-HWO algorithm are listed in Fig. 1.
Feature ranking is an important issue in intrusion

detection, as well. Elimination of less significant
features lowers the size of ANN and speeds up the
computations. Logistic regression was used to rank the

1. Initialize all weights and thresholds.
2. Increase n by 1 and stop if n>Nit. % Nit=Number of iterations
3. Apply training pattern and calculate the output activation.
4. Use the conjugate gradient approach to minimize error.
5. If MSE(n) > MSE(n-1)

Z←Z↓ % Reduce the value of Z (Learning factor)
Reload the previous best hidden weights
Go to step 9

6. If MSE (n) ≤ MSE (n-1)
Accumulate the cross-correlation Rδo(m) and auto-correlation
Roo(m) for hidden units:

vN

do p p
p=1

R (m)= d (j).O (m)∑

vN

oo p p
p=1

R (m)= O (i).O (m)∑

7. Solve linear equations for hidden weight changes:

oo do
i

e(j,i).R (i,m)=R (m)∑

8. Calculate the learning factor as

j i

-0.05EZ=
E .e(j,i)

w(j,i)

 
∂ 

 ∂  
∑ ∑

9. Update the hidden weights as:

w(j,i) w(j,i)+Z.e(j,i)←

10. Go to step 2

Fig. 1: OWO-HWO algorithm

features based on the Chi-square values for different
subsets selected using best subset selection model [38].
 The higher the Chi-square value, the higher is the
ranking. In Table 3, the ranking results of the Chi-
square test on KDD dataset are listed for the 25 most
significant features.

SIMULATION AND EXPERIMENTAL RESULTS

80,507 records from KDD 99 dataset were chosen
for our experiments. 49,403 of them built the training
set and the rest (31,104 samples) built the test set. This
dataset has the same distribution of attacks as "10%
KDD" dataset (Table 4).

Features in the KDD datasets have different forms:
discrete, continuous and symbolic, with significantly

World Appl. Sci. J., 7 (Special Issue of Computer & IT): 45-53, 2009

48

Table 3: Chi-square values of the 25 most significant features with
respect to the attack class

Feature DoS Probe R2L U2R

dst_host_diff_srv_rate 1334.8 3686.3 1114.1 2532.0
rerror_rate 1016.3 2734.5 1016.5 613.4
dst_host_srv_rerror_rate 967.9 2707.7 586.2 301.1
srv_rerror_rate 805.5 2515.7 583.3 244.9
dst_ host_rerror_rate 732.8 2252.0 560.6 207.8
diff_srv_rate 551.7 1228.3 350.1 39.9
dst_host_same_srv_rate 449.2 793.3 311.1 39.2
service 438.8 588.7 249.5 36.7
dst_host_srv_count 433.0 546.1 239.2 32.6
logged_in 363.6 427.2 141.8 25.1
dst_host_srv_diff_host_rate 353.5 422.3 141.3 25.0
srv_count 344.9 123.4 141.2 15.5
same_srv_rate 336.9 91.8 126.1 15.3
protocol_type 328.7 84.6 125.0 10.7
num_compromised 308.4 70.4 116.0 10.3
wrong_fragment 275.6 68.6 99.8 6.4
dst_host_same_src_port_rate 274.0 65.4 78.3 6.3
hot 240.3 33.9 53.1 6.2
srv_serror_rate 188.9 20.3 46.8 6.2
dst_host_srv_serror_rate 129.1 19.6 45.5 6.2
is_guest_login 121.4 18.2 37.1 3.8
serror_rate 102.2 17.7 33.9 3.4
src_bytes 101.5 8.3 27.7 3.4
duration 52.4 7.6 26.1 2.9
dst_host_serror_rate 45.4 7.4 26.0 2.7

Table 4: Size of the training and test datasets

Number of Number of
Class training samples test samples

DoS 39146 22985
Probe 411 417
R2L 113 1619
U2R 6 24
Normal 9727 6059

Table 5: Performance of MLP-based IDS with 20 input features and
Nh nodes in hidden layer after 50 training epochs

Number of MSE-training MSE-test Detection
hidden nodes samples samples rate (%)

10 0.0044 0.0447 97.42
15 0.0038 0.0406 97.75
20 0.0031 0.0407 97.96
25 0.0020 0.0350 99.20
30 0.0020 0.0284 99.58
35 0.0018 0.0291 99.52

varying resolution and ranges. Most pattern
classification methods are not able to process data in
such a format. Hence, preprocessing is required.
 Symbolic-valued features, such as protocol_type
(3 different symbols), service (70 different symbols)
and flag (11 different symbols) are mapped to
integer values ranging from 0 to S-1, where S is the
number of symbols. Continuous features having smaller
integer value ranges like wrong_fragment [0,3], urgent
[0,14], hot [0,101], num_failed_logins [0,5],
num_compromised [0,9], num_root [0,7468],
num_file_creations [0,100], num_shells [0,5],
num_access files [0,9], count [0,511], srv_count
[0,511], dst_host_count [0,255] and dst_host_srv_count
[0,255] are also scaled linearly to the range [0,1].

Logarithmic scaling (base 10) is applied to three
features spanned over a very large integer range,
namely duration [0,58329], src_bytes [0,1.3billion] and
dst_bytes [0,1.3billion], to reduce the ranges to [0,4.77]
and [0,9.11], respectively. Other features are either
Boolean, like logged_in, having binary values, or
continuous, like diff_srv_rate, in the range of [0,1] and
no scaling is needed for these features. So, each of the
mapped features are linearly scaled to the range [0,1].

Before discussing about the results of experiments,
it seems necessary to mention the standard metrics that
have been developed for evaluating IDS. Detection rate
(DR) and false alarm rate (FAR) are the two most
common metrics. DR is computed as the ratio between
the number of correctly detected attacks and the total
number of attacks, while FAR is computed as the ratio
between the number of normal connections that is
incorrectly misclassified as attacks and the total number
of normal connections.

Based on the results of feature ranking, four
experiments are performed by selecting 41, 25, 20 and
15 features as the input vector of MLP, respectively.
The MLP in each of these experiments has five linear
output neurons (representing 4 attack categories and 1
normal category). The number of MLP hidden nodes in
each of these experiments is selected as 35, 33, 30 and
25, respectively. This selection is based on monitoring
the MSE on test data for different values of hidden
nodes, e.g. as shown in Table 5 for the case of 20 input
features.

The convergence of OWO-HWO algorithm is fast
and the DR of neural classifier is more than 99%, as
shown in Table 6 for the case 41 input features.

The effect of the input feature-vector size reduction
on the performance of MLP, when using OWO-HWO
as training algorithm, is shown in Fig. 2 for each of the
mentioned experiments. The structure of MLP is shown
as [x y z] in the legend of figure, representing number
of input, hidden and output nodes, respectively.

World Appl. Sci. J., 7 (Special Issue of Computer & IT): 45-53, 2009

49

Fig. 2: Performance of MLP-based IDS, using feature-selection and OWO-HWO training algorithm

Table 6:Performance of MLP-based IDS, using OWO-HWO
training algorithm with 41 input features

Number MSE-training MSE-test Detection Training
of epochs samples samples rate (%) time
(sec)

25 0.0014 0.0202 99.68 410
50 0.0010 0.0186 99.79 820
75 0.0008 0.0188 99.78 1250
100 0.0008 0.0188 99.78 1750
150 0.0007 0.0193 99.76 2700
200 0.0007 0.0186 99.79 3650

Table 7: Cost matrix values for KDD dataset
Predicted

--
Actual DoS Probe R2L U2R Normal
DoS 0 1 2 2 2
Probe 2 0 2 2 1
R2L 2 2 0 2 4
U2R 2 2 2 0 3
Normal 2 1 2 2 0

 As shown in Fig. 2, selection of only 25 or even
20 of the most important features does not degrade
the performance, noticeably.
 For the purpose of classifier algorithm evaluation,
another comparative measure is cost per example

(CPE) [39]. CPE is calculated using the following
formula:

m m

i=1 j=1

1
CPE= CM(i,j).C(i,j)

T∑∑ (13)

Table 8: Confusion matrix of MLP-based IDS with 41 input
features

Predicted
--

Actual DoS Probe R2L U2R Normal

DoS 22976 2 5 0 2
Probe 10 403 1 0 3
R2L 5 1 1602 0 11
U2R 1 0 10 12 1
Normal 5 8 2 0 6044

Table 9: Confusion matrix of MLP-based IDS with 25 input
features

Predicted
--

Actual DoS Probe R2L U2R Normal

DoS 22964 1 8 0 12
Probe 32 374 4 0 7
R2L 4 2 1598 0 15
U2R 3 10 5 2 4
Normal 10 8 14 0 6027

World Appl. Sci. J., 7 (Special Issue of Computer & IT): 45-53, 2009

50

Table 10:Confusion matrix of MLP-based IDS with 20 input
features

Predicted
--

Actual DoS Probe R2L U2R Normal
DoS 22956 5 19 0 5
Probe 30 371 8 0 8
R2L 15 2 1585 0 17
U2R 1 10 9 1 3
Normal 16 7 21 0 6015

Table 11: Confusion matrix of MLP-based IDS with 15 input
features

Predicted
--

Actual DoS Probe R2L U2R Normal
DoS 22899 8 70 0 8
Probe 21 362 25 0 9
R2L 25 0 1589 0 5
U2R 1 0 19 1 3
Normal 7 10 1 0 6041

where CM and C are confusion matrix and cost
matrix, respectively. In Eq. (13), T represents the
total number of test instances and m is the number of
classes in classification. CM is a square matrix in
which each column corresponds to the predicted
class, while rows correspond to the actual classes. An
entry at row i and column j, CM(i,j) , represents the
number of misclassified instances that originally
belong to class i, although incorrectly identified as a
member of class j. The entries of the primary
diagonal, CM(i,i), stand for the number of properly
detected instances. Cost matrix is similarly defined,
as well and entry C(i,j) represents the cost penalty for
misclassifying an instance belonging to class i into
class j. Cost matrix values employed for the KDD 99
classifier learning contest are shown in Table 7 [31].

 The confusion matrices for each of neural
classifiers, with the mentioned architectures, are
reported in Table 8-11, respectively.
 The performance of the proposed classifiers,
with reduced number of input features and also fast
OWO-HWO training algorithm, has been compared
with some other machine learning methods, tested on
the KDD dataset, as well (Table 12).

It should be noted that most of the machine
learning algorithms offered an acceptable level of
classification rate for DoS and Probe attack
categories and demonstrated poor performance on the
R2L and U2R categories [41].

As shown in Table 12, the proposed classifiers
demonstrate better performance in R2L category.
Classification rate for U2R attack category is the
best, when using 41 input features. DR and CPE of
the proposed classifiers are better than mentioned
models, too. FAR of the proposed classifier with 41
input features is the best among mentioned models,
as well.

CONCLUSIONS

In this paper, two mechanisms were used
concurrently to achieve fast IDS. As the first
mechanism, the training speed of a neural attack
classifier was improved by using OWO-HWO
algorithm. As the second mechanism, a feature
relevance analysis was performed to decrease the
number of input features and size of neural classifier.

Experimentations showed that the resulting
reduced-size neural classifiers have improved
classification rates, especially for R2L attack
category, as compared to other machine learning
algorithms. The proposed approach was evaluated
effective in terms of detection rate (DR) and cost per
example (CPE), and its false alarm rate (FAR) was
comparable to other machine learning methods, as
well.

Table 12: Performance comparison of different models for intrusion detection
Classification rate
--

Model DoS Probe R2L U2R Normal DR FAR CPE
MLP-41 features-HWO 99.96 96.64 98.95 50.0 99.75 99.79 0.25 0.0046
MLP-25 features-HWO 99.91 89.69 98.70 8.33 99.47 99.57 0.53 0.0095
MLP-20 features-HWO 99.87 88.97 97.90 4.17 99.27 99.47 0.73 0.0119
MLP-15 features-HWO 99.63 86.81 98.15 4.17 99.70 99.23 0.30 0.0132
Winner of KDD in 2000 [17] 97.10 83.30 8.40 13.20 99.50 91.80 0.60 0.2331
Runner up of KDD in 2000 [18] 97.50 84.50 7.30 11.80 99.40 91.50 0.60 0.2356
PNrule [39] 96.90 73.20 10.70 6.60 99.50 91.10 0.40 0.2371
ESC-IDS [40] 99.50 84.10 31.50 14.10 98.20 95.30 1.90 0.1579

World Appl. Sci. J., 7 (Special Issue of Computer & IT): 45-53, 2009

51

Appendix A: Description and type of 41 features in KDD dataset
Feature Description Type
duration Duration of the connection (in seconds) continuous
protocol_type Type of the connection protocol discrete
service Service on the destination discrete
flag Status flag of the connection discrete
src_bytes Number of bytes sent from source to destination continuous
dst_bytes Number of bytes sent from destination to source continuous
land 1 if connection is from/to the same host/port; 0 otherwise discrete
wrong_fragment Number of wrong fragments continuous
urgent Number of urgent packets continuous
hot Number of “hot” indicators continuous
num_failed_logins Number of failed logins continuous
logged_in 1 if successfully logged in; 0 otherwise discrete
num_compromised Number of “compromised” conditions continuous
root_shell 1 if root shell is obtained; 0 otherwise discrete
su_attempted 1 if “su root” command attempted; 0 otherwise discrete
num_root Number of “root” accesses continuous
num_file_creations Number of file creation operations continuous
num_shells Number of shell prompts continuous
num_access_files Number of operations on access control files continuous
num_outbound_cmds Number of outbound commands in a FTP session continuous
is_host_login 1 if the login belongs to the “hot” list; 0 otherwise discrete
is_guest_login 1 if the login is a “guest” login; 0 otherwise discrete
count Number of connections to the same host as the current connection in the past two seconds continuous
srv_count Number of connections to the same service as the current connection in the past two secondscontinuous
serror_rate Percent of connections that have “SYN” errors (same-host connections) continuous
srv_serror_rate Percent of connections that have “SYN” errors (same-service connections) continuous
rerror_rate Percent of connections that have “REJ” errors (same-host connections) continuous
srv_rerror_rate Percent of connections that have “REJ” errors (same-service connections) continuous
same_srv_rate Percent of connections to the same service continuous
diff_srv_rate Percent of connections to different services continuous
srv_diff_host_rate Percent of connections to different hosts continuous
dst_host_count Number of connections having the same destination host continuous
dst_host_srv_count Number of connections having the same destination host and using the same service continuous
dst_host_same_srv_rate Percent of connections having the same destination host and using the same service continuous
dst_host_diff_srv_rate Percent of different services on the current host continuous
dst_host_same_src_port_rate Percent of connections to the current host having the same src port continuous
dst_host_srv_diff_host_rate Percent of connections to the same service coming from different hosts continuous
dst_host_serror_rate Percent of connections to the current host that have an S0 error continuous
dst_host_srv_serror_rate Percent of connections to the current host and specified service that have an S0 error continuous
dst_host_rerror_rate Percent of connections to the current host that have an RST error continuous
dst_host_srv_rerror_rate Percent of connections to the current host and specified service that have an RST error continuous

REFERENCES
1. Garcia-Teodoro, P., J. Diaz-Verdejo, G. Macia-

Fernandez and E. Vazquez, 2009. Anomaly-Base
Network Intrusion Detection: Techniques, Systems
and Challenges. Journal of Computers and
Security, 28: 18-28.

2. Ilgun, K., R.A. Kemmerer and P.A. Porras, 1995.
State Transition Analysis: A Rule-Based Intrusion
Detection Approach. IEEE Transactions on
Software Engineering, 21: 181-199.

3. Beghdad, R., 2007. Training All the KDD Dataset
to Classify and Detect Attacks. Journal of Neural
Network World, 17: 81-91.

4. Chen, Z., H. Wang, B. Yang, L. Wang and R. Sun,
2007. A FDRS-Based Data Classification
Method Used for Abnormal Network Intrusion
Detection. In the Proceedings of the IEEE
International Conference on Natural Computation,
2: 375-380.

World Appl. Sci. J., 7 (Special Issue of Computer & IT): 45-53, 2009

52

5. Ma, R., Y. Liu and X. Lin, 2007. Hybrid QPSO
Based Wavelet Neural Networks for Network
Anomaly Detection. In the Proceedings of the
IEEE Workshop on Digital Media and its
Application in Museum and Heritage, pp: 442-447.

6. Biermann, E., E. Cloeteand and L.M. Venter, 2001.
A Comparison of Intrusion Detection Systems.
Journal of Computers and Security, 20: 676-683.

7. Han, S.J. and S.B. Cho, 2003. Detecting Intrusion
with Rule-Based Integration of Multiple Models.
Journal of Computers and Security, 22: 613-623.

8. Novikov, D., R.V. Yampolskiy and L. Reznik,
2006. Artificial Intelligence Approaches for
Intrusion Detection. In the Proceedings of the IEEE
Conference on Systems, Applications and
Technology, pp: 1-8.

9. Joshi, M.V., R.C. Agrawal and V. Kumar, 2001.
Mining Needless in a Haystack: Classifying Rare
Classes via Two-Phase Rule Induction. In the
Proceedings of the ACM SIGMOD Conference on
Management of Data, pp: 91-102.

10. Debar, H. and B. Dorizzi, 1992. An Application of
Recurrent Network to an Intrusion Detection
System. In the Proceedings of the International
Joint Conference on Neural Networks, pp:
478-483.

11. Kayacik, G., N. Zincir-Heywood and M. Heywood,
2003. On the Capability of an SOM-Based
Intrusion Detection System. In the Proceedings of
the International Joint Conference on Neural
Networks, pp: 1808-1813.

12. Golovko, V., L. Va itsekhovich, P. Kochurko and
U. Rubanau, 2007. Dimensionality Reduction
and Attack Recognition Using Neural Network
Approaches. In the Proceedings of the
International Joint Conference on Neural
Networks, pp: 2734-2739.

13. Beghdad, R., 2008. Critical Study of Neural
Networks in Detecting Intrusions. Journal of
Computers and Security, 27: 168-175.

14. Dickerson, J.E., 2000. Fuzzy Network Profiling for
Intrusion Detection. In the Proceedings of the
North American Fuzzy Information Processing
Society (NAFIPS) International Conference,
pp: 301-306.

15. Lin, Y., K. Chen and X. Liao, 2004. A Genetic
Clustering Method for Intrusion Detection. Journal
of Pattern Recognition, 37: 924-927.

16. Denning, D.E., 1987. An Intrusion-Detection
Model. IEEE Transactions on Software
Engineering, 13: 222-232.

17. Pfahringer, B., 2000. Winning the KDD 99
Classification Cup: Bagged Boosting. Journal of
SIGKDD Explorations, 1: 65-66.

18. Levin, I., 2000. KDD Classifier Learning Contest:
LLSoft's Results Overview. Journal of SIGKDD
Explorations, 1: 67-75.

19. Mukkamala, S., G. Janoski and A.H. Sung, 2002.
Intrusion Detection Using Neural Networks and
Support Vector Machines. In the Proceedings of
the International Joint Conference on Neural
Networks, pp: 1702-1707.

20. Abadeh, M.S., J. Habibi and C. Lucas, 2005.
Intrusion Detection Using a Fuzzy Genetic-Based
Learning Algorithm. Journal of Network and
Computer Application, 30: 414-428.

21. Tajbakhsh, A., M. Rahmati and A. Mirzaei, 2009.
Intrusion Detection Using Fuzzy Association
Rules. Journal of Applied Soft Computing,
9: 462-469.

22. Ye, N., S.M. Emran, Q. Chen and S. Vilbert, 2002.
Multivariate Statistical Analysis of Audit Trials for
Host-Based Intrusion Detection. IEEE Transactions
on Computers, 51: 810-820.

23. Kruegel, C., D. Mutz, W. Robertson and F. Valeur,
2003. Bayesian Event Classification for Intrusion
Detection. In the Proceedings of the Annual
Computer Security Applications Conference,
pp: 14-23.

24. Yeung, D.Y. and Y. Ding, 2003. Host-Based
Intrusion Detection Using Dynamic and Static
Behavioral Models. Journal of Pattern Recognition,
36: 229-243.

25. Cansian, A.M., E. Moreira, A. Carvalho and J.M.
Bonifacio, 1997. Network Intrusion Detection
Using Neural Networks. In the Proceedings of
the International Conference on Computational
Intelligence and Multimedia Applications,
pp: 276-280.

26. Ramadas, M., S. Ostermann and B. Tjaden, 2003.
Detecting Anomalous Network Traffic with Self-
Organizing Maps. Recent Advances in Intrusion
Detection, RAID, Lecture Notes in Computer
Science (LNCS), 2820: 36-54.

27. Gomez, J. and D. Dasgupta, 2002. Evolving Fuzzy
Classifiers for Intrusion Detection. In the
Proceedings of the IEEE Workshop on Information
Assurance, pp: 68-75.

28. Song, D., M.I. Heywood and A.N. Zincir-
Heywood, 2005. Training Genetic Programming on
Half a Million Patterns: An Example from
Anomaly Detection. IEEE Transactions on
Evolutionary Computation, 9: 225-239.

29. Sequeira, K. and M. Zaki, 2002. ADMIT:
Anomaly-Based Data Mining for Intrusions. In the
Proceedings of the ACM SIGKDD International
Conference on Knowledge Discovery and Data
Mining, pp: 386-395.

World Appl. Sci. J., 7 (Special Issue of Computer & IT): 45-53, 2009

53

30. The 1998 Intrusion Detection Off-Line Evaluation
Plan, MIT Lincoln Lab., Information Systems
Technology Group, 25 Mar. 1998 (Available on
http://www.11.mit.edu/IST/ideval/docs/1998/id98-
eval-11.txt).

31. 1999 KDD Cup Competition (Available on
http://kdd.ics.uci.edu/databases/kddcup99/kddcup9
9.html).

32. Scalero, R.S. and N. Tepedelenlioglu, 1992. A Fast
New Algorithm for Training Feedforward Neural
Networks. IEEE Transactions on Signal
Processing, 40: 202-210.

33. Yu, C., M.T. Manry, J. Li and P.L. Narasimha,
2006. An Efficient Hidden Layer Training Method
for Multilayer Perceptron. Neurocomputing,
70: 525-535.

34. Sartori, M.A. and P.J. Antsaklis, 1991. A Simple
Method to Derive Bounds on the Size and to Train
Multilayer Neural Networks. IEEE Transactions on
Neural Networks, 2: 467-471.

35. Rohani, K., M.S. Chen and M.T. Manry, 1992.
Neural Subnet Design by Direct Polynomial
Mapping. IEEE Transactions on Neural Networks,
3: 1024-1026.

36. Chen, H.H., M.T. Manry and H. Chandrasekaran,
1996. A Neural Network Training Algorithm
Utilizing Multiple Sets of Linear Equations. In the
Conference Record of the 30th Asilomar
Conference on Signals, Systems and Computers,
pp: 1166-1170.

37. Werbos, P., 1988. Backpropagation: Past and
Future. In the Proceedings of the International
Conference on Neural Networks, pp: 343-353.

38. Tamilarasan, A., S. Mukkamala, A.H. Sung and K.
Yendrapalli, 2006. Feature Ranking and Selection
for Intrusion Detection Using Artificial Neural
Networks and Statistical Methods. In the
Proceedings of the International Joint Conference
on Neural Networks, pp: 4754-4761.

39. Agrawal, R. and M.V. Joshi, 2000. PNrule: A New
Framework for Learning Classifier Models in Data
Mining (A Case-Study in Network Intrusion
Detection). IBM Research Division, Report No.
RC-21719.

40. Nadjaran Toosi, A. and M. Kahani, 2007. A Novel
Soft Computing Model Using Adaptive
Neuro-Fuzzy Inference System for Intrusion
Detection. In the Proceedings of the IEEE
International Conference on Networking, Sensing
and Control, pp: 834-839.

41. Sabhnani, M. and G. Serpen, 2004. Why Machine
Learning Algorithms Fail in Misuse Detection on
KDD Intrusion Detection Data Set. Journal of
Intelligent Data Analysis, 6: 1-13.

