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Abstract: Reducing the computational complexity is desired in speech coding algorithms. In this paper, 
three neural gain predictors are proposed which can function as backward gain adaptation module of low 
delay-code excited linear prediction (LD-CELP) G.728 encoder, recommended by International
Telecommunication Union-Telecom sector (ITU-T, formerly CCITT). Elman, multilayer perceptron (MLP)
and fuzzy ARTMAP are candidate neural models in this work. Empirical results show that gain prediction 
by Elman and MLP neural networks improve the mean opinion score (MOS) and segmental signal to noise 
ratio (SNRseg) as compared to traditional implementation of encoder. However, fuzzy ARTMAP reduces 
the computational complexity noticeably, without significant degradations in MOS and SNRseg.
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INTRODUCTION

With the fast progress of communication systems 
and penetration rate increase of mobile and Internet,
employing speech compression algorithms for efficient 
utilization of channel bandwidth is necessary. So far, 
various methods for speech coding have been proposed. 
In this way, one of the most effective methods is based 
on the analysis by synthesis (AbS) technique, which 
was established by Atal and Remede in 1982 [1]. 
One of the main algorithms for speech coding at
bit rates lower than 16 kbps is code excited
linear prediction (CELP). It was introduced by Schroder 
and Atal in 1985 [2]. In May 1992, International
Telecommunication Union-Telecom sector (ITU-T,
formerly CCITT) approved a 16 kbps low delay CELP 
(LD-CELP) coding algorithm with a delay of less than 
2 msec and recommended it as G.728 [3]. In 1994,
fixed-point version of LD-CELP was introduced [4].
LD-CELP is basically a backward-adaptive version of 
the CELP coder in which the predictor and excitation 
gain are updated backward adaptively by analyzing the 
former quantized speech and excitation, respectively. 
This coder is generally used in Internet voice calls and 
cell phones. Many researches have been performed to 
improve LD-CELP speech coding algorithm [5-11].

On the other hand, artificial neural networks
(ANNs) emerged in the recent decades as powerful 
and adaptive data processing models for pattern
classification and feature extraction. Neural networks

have been used extensively and successfully for a
variety of applications in speech coding algorithms, as 
well. The researches on using ANNs in speech coding 
can be classified into two main domains: neural
predictors which improve the quality of coder [12-20]
and reduction the computational complexity [21-26].

CELPs with different nonlinear predictors were
proposed to improve the signal to noise ratio (SNR) of 
the decoded signal [14-19]. For example, a nonlinear 
scalar predictor based on hybrid of three ANNs is 
introduced in [18]. In the family of CELP coders,
codebook search process has high complexity. ANNs 
can be used to reduce this complexity. For example, an 
efficient procedure for exploiting self organizing maps 
(SOMs) for a fast search quantization procedure is 
presented in [21] that greatly reduce the complexity for 
vector quantization (VQ) of the spectral envelope.
Huong et al. employed a new line spectral pairs (LSPs) 
codebook by using a centroid neural network (CNN) to 
enhance the compression rate of an adaptive multi-rate
(AMR) coder [22]. Stochastic codebook (SCB) search 
for CELP coding is performed by counter propagation
neural network model and less computational
complexity is achieved [23]. A modified Hopfield
neural net is also used to search in codebook of a CELP 
coder [24]. A codebook design algorithm, based on 
modified self-organizing feature map (SOFM) neural
network, is introduced for LD-CELP in [25], as well. 

In the LD-CELP coder, there are three separate 
LPC analyses to update the coefficients of three filters: 
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Fig. 1: Block diagram of LD-CELP encoder and the proposed modification

the synthesis filter, the log-gain predictor and the
perceptual weighting filter. This paper is focused on the 
log-gain predictor. In this study, gain prediction is 
preformed by using neural networks to reduce the
complexity of LD-CELP algorithm. Three neural
models are used in this paper to predict gain: Elman, 
multilayer perceptron (MLP) and fuzzy ARTMAP.

It is noted that Elman neural model is commonly a 
two-layer network with feedback from output of the 
first-layer to the input. This recurrent connection allows 
the Elman NN to both detect and generate time-varying
patterns [27, 28]. MLP is another candidate neural
model which is an excellent function approximation 
tool, utilizing hidden units and have been employed 
with great success in both classification and regression
analysis problems [29, 30]. Fuzzy ARTMAP, which is 
an extension to ARTMAP and it is capable of forming 
associative maps between clusters of its input and 
output domains in a supervised manner [31-35], is 
another neural model that is used in the experiments of 
this research. 

This paper is organized as follows. Section 2 gives 
a brief overview of the 16 kbps LD-CELP coder. In 
Section 3, backward adaptation of excitation gain in 
LD-CELP is described. The details of gain prediction 
by Elman, MLP and fuzzy ARTMAP neural models are 
discussed in Section 4. In Section 5, the experimental 
results are reported and conclusions are drawn in
Section 6.

ARCHITECTURE OF LD-CELP CODER

LD-CELP is an AbS codebook driven method
for linear predictive speech coding [3, 7]. The basic 
structure of the encoder and the proposed modification 
in its block diagram are shown in Fig. 1. In this coder, 
which is an encoding method based on a source filter 
model, speech is reproduced by using excitation
codevectors. These codevectors are time-series signals 
which are stored in an excitation codebook and drive a 
linear predictive synthesis filter that represents the
spectral envelope of the input speech.

The optimal excitation codevector is selected from 
the excitation codebook by using a closed-loop search 
according to the AbS method to find the one having the 
minimum perceptually-weighted waveform distortion
of the synthetic speech signal.

BACKWARD ADAPTATION 
OF EXCITATION GAIN IN LD-CELP

In this section, backward adaptation of excitation 
gain module, as a part of LD-CELP algorithm, is
explained (Fig. 2). Input and output of this module are
gain-scaled excitation e(n) and excitation gain (n),
respectively. As shown in Fig. 2, the 1-vector delay unit 
makes the previous gain-scaled excitation vector e(n–1)
available. The root-mean-square (RMS) calculator then 
calculates the RMS value of the vector e(n–1). Then, 
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Fig. 2: Block diagram of backward gain adaptation in LD-CELP [3]

Table 1: Number of instruction cycles for backward gain adaptation 
module components of ITU-T G.728 [36]

Number of
Functional block instruction cycles
Linear prediction in logarithmic domain 39
Offset value adder 2
Logarithmic gain limiter 6
Inverse logarithm calculator 27
Hybrid windowing 253
Levinson-Durbin recursion 1375
Bandwidth expansion 5
Total for each codeword 1707

the logarithm calculator calculates the dB value of the 
RMS of e(n–1). A log-gain offset value of 32 dB is 
stored in the log-gain offset value holder. This value is
roughly equal to the average excitation gain level (in 
dB) during voiced speech. The adder subtracts this log-
gain offset value from the logarithmic gain produced by 
the logarithm calculator. The resulting offset removed 
logarithmic gain, δ(n–1), is then used by the hybrid 
windowing module and the Levinson-Durbin recursion 
module. The output of the Levinson-Durbin recursion 
module is the coefficients of the tenth order of linear 
predictor. The bandwidth expansion module then
moves the roots of this polynomial toward the origin of 
z-plane. The predictor attempts to predict δ(n) based on 
a linear combination of δ(n–1), δ(n–2),..., δ(n–10)
[6, 7]. The predicted version of δ(n) is denoted as ˆ(n)δ
and is given by:

10

i
i 1

ˆ(n) a (n i)
=

δ = − δ −∑ (1)

Fig. 3: Replacement of backward gain adaptation
module by ANN models 

In the next step, offset value adds to ˆ(n)δ  and then 
the log-gain limiter clips the level of it, if the resulting
log-gain value was lower or upper than 0 dB and 60 dB, 
respectively. Finally, the value of log-gain in
logarithmic domain converts to linear domain by
inverse logarithm calculator. 

The complexity of backward gain adaptation
module components, in terms of instruction cycles, is 
reported in Table 1. 

As shown in Fig. 2, LPC analysis is used in the 
structure of backward gain adaptation module to update 
the coefficients of filter. Levinson-Durbin algorithm
and hybrid windowing are the most important factors of 
this complexity. Operations in both of these modules 
depend strongly on the order of LPC, p, and frame 
size, L. If the width of hybrid non-recursive
window is equal to N, then hybrid windowing
needs (L+N)*P+1 multiplications and (L+N)*P+1
additions and Levinson-Durbin algorithm needs P2+2P
multiplications and P2 additions. In this paper,
backward gain adaptation module is replaced by ANN 
models to reduce the complexity of algorithm (Fig. 3).

NEURAL GAIN PREDICTOR CANDIDATES

As mentioned earlier, three neural models
(Elman, MLP and fuzzy ARTMAP) are used to predict
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Table 2: Elman-based gain predictor specifications

Specification Value or type

Train function 'trainlm'
Net.trainParam.goal 0.01
Number of nodes in layers 8-8-1
Activation functions of layers 'tansig', 'tansig', 'purelin'
Number of epochs 321
Training time (sec) 2200
MSE on the test data 0.019

Table 3: MLP-based gain predictor specifications

Specification Value or type

Train function 'trainlm'
net.trainParam.goal 0.01
Number of nodes in layers 8-8-1
Activation functions of layers 'tansig', 'tansig', 'purelin'
Number of epochs 620
Training time (sec) 3100
MSE on the test data 0.029

Table 4: Fuzzy ARTMAP-based gain predictor specifications

Specification Value

Learning rate 0.968
Vigilance parameter 0.955
Number of F0 nodes 10
Number of F1 nodes 540
Number of F2 nodes 540
Number of epochs 1
Training time (sec) 301
Correct identification rate 95%

excitation gain in LD-CELP encoder. The scaled
excitation vector (e(n)), is fed as input pattern to the 
network and excitation gain ( (n)) is target output
of the network. Codebook search module, searches
through 1024 candidate codevectors in the excitation 
VQ codebook and finds index of the best codevector. 
Indeed, in excitation VQ codebook, the best shape
codevector and the best gain value, which are extracted 
from codebook module, are multiplied by each other to 
get the quantized excitation vector y(n). Then, this 
vector multiplies by gain and results the scaled
excitation vector. The excitation gain is the output of 
backward gain adaptation module. The sizes of scaled 
excitation vector and excitation gain are 5 and 1,
respectively. The training dataset includes about 50,000
vectors of fifteen male and twenty female speakers with 
different accents. In fact, these vectors are applied to 
encoder and the excitation gain and scaled excitation 
are calculated for each frame. This data is used as the 
training data of neural  models. The training dataset of 

Elman and MLP neural networks are similar. The
details of fuzzy ARTMAP training dataset are
explained in the next subsections, too. The test dataset 
includes 9,000 vectors, as well. 

Based on the minimum mean squared error (MSE) 
and training time, the optimal neural model is selected. 
MSE is calculated using Equation (2):

n m

ij ij
j i

d

(d y )2

MSE
N n

−

=
×

∑∑
(2)

where n is the number of output processing elements 
and Nd is the number of exemplars in dataset. yij is the 
network output for exemplar i at processing element j
and dij is the desired output for exemplar i at processing 
element j.

Elman NN: Elman NN is a type of partial recurrent 
network with an additional feedback connection
from the output of the first layer to its input layer. In 
our scheme, Elman has tangent sigmoid, tansig,
neurons in its two hidden layers and pure linear,
purelin, neurons in its output layer. The specifications 
of Elman-based gain predictor in our simulations, using 
Neural Network Toolbox of MATLAB software, are
reported in Table 2. 

MLP NN: Multilayer perceptrons are the most popular 
NN with successful pattern matching and function-
approximation applications in many diverse fields. The 
MLP in our experiments has three layers (two hidden 
layers and one output layer). The specifications of 
MLP-based gain predictor in our simulations are
reported in Table 3.

Fuzzy ARTMAP: Fuzzy ARTMAP is a neural
architecture for incremental supervised learning of
recognition categories and multidimensional maps in 
response to arbitrary sequences of analog or binary 
input vectors. It achieves a synthesis of fuzzy logic and 
adaptive resonance theory (ART) neural networks by 
exploiting a close formal similarity between the
computations of fuzzy method and ART category
choice, resonance and learning. ARTMAP networks 
consist of two ART1 networks, ARTa and ARTb,
bridged via inter-ART module. An ART1 module has 
three layers: input layer (F0), the comparison layer (F1)
and the recognition layer (F2). Fuzzy ARTMAP is a 
natural extension to ARTMAP that uses fuzzy ART 
instead of ART1 modules [31-35]. The operation of 
fuzzy ARTMAP is affected by two network parameters: 
the choice parameter, a, and the baseline vigilance
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Table 5: Performance comparison of the proposed systems with traditional ITU-T G.728 implementation

System Execution time (sec) SNRseg (dB) MOS

Traditional G.728 [7, 10] 0.25500 18.45 3.91
G.728 with Elman-based gain predictor 0.04370 18.59 4.06
G.728 with MLP-based gain predictor 0.03870 18.51 3.93
G.728 with fuzzy ARTMAP-based gain predictor 0.00129 18.37 3.71

parameter, ρ. These parameters take values in the
interval [0,1]. Both of these parameters affect the
number of nodes created in the category representation 
layer of fuzzy ARTMAP.

The dataset which is used to train the Elman and 
MLP networks is not suitable for fuzzy ARTMAP and 
some preprocessing is needed. Fuzzy ARTMAP
requires input patterns to be presented as vectors of 
floating point numbers in the range [0,1]. Therefore the 
training and test datasets need normalization or
mapping the original values into this range. The value 
of excitation gain in ITU-T G.728 recommendation is 
in the range of [0 dB,60 dB]. In our simulation of 
fuzzy ARTMAP structure, the mentioned range is
divided to 540 classes. So, the resolution of this 
classification is about 0.1 dB. The specifications of the 
fuzzy ARTMAP-based gain predictor in our
simulations are reported in Table 4, too.

EMPIRICAL RESULTS

In this section, we will compare the performance of 
three mentioned neural models which are employed for 
gain prediction. In this work, a 16 kbps LD-CELP
coder based on the G.728 recommendation is
implemented [3]. The encoder and decoder are
simulated using MATLAB v.7.2 software. The speech 
database in this work use Farsi speech data files of 
FARSDAT [37]. FARSDAT is a continuous speech 
Farsi corpus including 6,000 utterances from 300
speakers with various accents. 210 sentences are
selected, including 90 male and 120 female utterances. 
The sampling frequency is 8 kHz and the frame size is 
20 samples, as well. This dataset consists of about 
50,000 vectors. 40,000 vectors of this dataset are used 
for training candidate neural networks and 9,000
vectors are used as test dataset.

The performance comparison of Elman-based and 
MLP-based gain predictors shows that MSE in Elman is 
lower than MLP. The number of epochs in Elman is 
lower than MLP, too. However, when the backward 
gain adaptation module is replaced by trained network, 
the execution time for MLP is lower than Elman (Table 
5). The execution time, when calculated for 400 frames 
of speech, is 0.0387 sec for MLP and is 0.0437 sec for 
Elman NN. By comparing the performance of fuzzy 

ARTMAP-based and Elman-based neural gain
predictors, we conclude that the number of epochs and 
training time in fuzzy ARTMAP are the lowest ones. 
The mentioned execution time for fuzzy ARTMAP is 
0.00129 sec, which is the lowest among three
approaches, too. The performance of three proposed 
systems, equipped with neural gain prediction, can be 
compared with a traditional G.728 [7, 10] in terms of 
segmental SNR (SNRseg) and mean opinion score
(MOS) (Table 5).

It is noted that MOS provides a numerical
indication of the perceived quality of received media 
after compression and/or transmission. The MOS is 
expressed as a single number in the range of 1 to 5, 
where 1 is the lowest perceived audio quality and 5 is 
the highest perceived audio quality measurement.

SNRseg is an important factor in determining the 
quality of audio data, too. This is particularly important
in speech recognition technology, since it is well known 
that recognition performance is strongly influenced by 
the SNR [38]:

2

n
2 2 2

n

x (n)

SNR 10log( )
(x (n) y (n))

=
−

∑
∑
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where x(n) is the input signal to encoder and y(n) is the 
output signal from decoder. SNRseg is defined as the 
average of SNR measurements:

N

seg m
f m 1

1SNR SNR
N

=

= ∑ (4)

in which, Nf is the number of frames.

CONCLUSIONS

In this paper, backward gain prediction module in 
the structure of LD-CELP encoder was replaced by 
three neural gain predictors. Elman, MLP and fuzzy 
ARTMAP were the candidate neural models in this 
work. Empirical results showed that gain prediction by 
Elman  and  MLP neural  networks  improved the  MOS 
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and SNRseg, as compared to traditional implementations
of G.728 encoder. In this  way, when Elman and MLP
gain predictors were used, MOS was 0.15 and 0.02
higher than  traditional G.728, respectively (Table 5).

The SNRseg for Elman and MLP neural predictors 
was also 0.14 dB and 0.06 dB higher than traditional 
G.728, respectively. On the other hand, fuzzy
ARTMAP-based gain predictor reduced the
computational complexity noticeably, without
significant degradations in MOS and SNRseg.
Experimental results showed that when fuzzy
ARTMAP is used as the neural gain predictor, MOS 
and SNRseg were reduced 0.2 and 0.08 dB, respectively.
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