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Abstract: With the growing of computer networks, the number of attacks has grown extensively. Intrusion 
detection system (IDS) is known as a critical technology to help protection. In this paper, a hybrid misuse-
based IDS, using combined structure of an association rule mining algorithm and a connectionist model, is 
presented. The key idea is to take advantage of different classification abilities of knowledge-based and 
machine learning approaches for different attacks. To lower the computational load of association rule 
mining, the inputs of rule mining algorithm are selected based on the results of a feature relevance analysis. 
Experimental results show that the proposed hybrid model, in which knowledge-based section of the 
system reports hard recognizable attack categories, can improve classification results, especially for 
remote-to-local (R2L) and user-to-root (U2R) attack classes. This hybrid system also offers better detection
rate (DR) and cost per example (CPE) compared to neural-based IDS. False alarm rate (FAR) of the 
proposed model is  comparable with other intrusion detection systems, as well.
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INTRODUCTION

With the growing of computer networks and
Internet connectivity, the number of attacks has grown
extensively. Preventing attacks only by passive security 
policies, e.g. firewalls, is difficult. Intrusion detection
system (IDS) is known as a critical technology to help 
protection as an active way.

Based on the information source, IDS may be
either host-based or network-based [1]. Host-based IDS 
examines data held on individual computers that serve 
as hosts and network-based IDS examines data
exchanged between computers, such as traffic volume, 
Internet protocol (IP) addresses, service ports, protocol 
usage, etc.

Based on the type of processing modules for
analyzing events and detecting potential hostile
behavior, IDS may be anomaly-based [2] or misuse-
based [3]. Anomaly-based IDS detects activities that 
vary from established patterns for users and misuse-
based IDS compares user's activities with the known 
behaviors of attackers.

Many soft computing approaches have been
applied to the intrusion detection field, e.g. neural
networks [4], Markov models [5], fuzzy logic [6],
genetic algorithms [7], decis ion trees [8] and hybrid 
systems [9].

Given the significance of the intrusion detection 
problem, a benchmark is provided by the international 

knowledge discovery and data mining group (KDD)
[10]. There are four main categories of attacks given in 
the KDD. They are denial-of-service (DoS), probe,
remote-to-local (R2L) and user-to-root (U2R). DoS
attacks deny legitimate requests to a system. Probe 
involves scanning and probing for getting confidential 
data. R2L is unauthorized access from a remote user 
and U2R is unauthorized access to local super-user
privileges.

The detection results reported by most of the
researchers who employed machine learning algorithms 
on KDD indicate that DoS attacks and probes are 
detected accurately whereas attacks involving content
(R2L and U2R) have substantially lower detection rates 
[11].

On the other hand, association rule induction is one 
of the most well-known approaches in data mining 
techniques [12]. Recently, association rules have been 
used in pattern recognition problems such as
classification [13-15]. In [14, 15], a new concept called 
class association rule (CAR) is used to solve the
classification problems. A CAR set is a subset of
association rules with the specified classes as their
consequences. Boolean and fuzzy CARs are used for 
building classifiers in [14, 15], respectively.

Currently, how to construct a new hybrid
intelligent knowledge processing system is a hot
research topic. So, in this paper a new model is
proposed that combines classification-based association
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rule approach with a multilayer perceptron (MLP)
neural network, as a hybrid misuse-based IDS. This 
combination provides improved classification results as 
compared to MLP-based classifier and also many of the 
previous systems. In addition, a feature relevance
analysis is used to decrease the number of applied 
features to association rule part of the system.

The subsequent sections of this paper are organized 
as follows. The foundation of classification based on 
predictive association rules (CPAR) approach is
described in Section 2. KDD 99 dataset is briefly
reviewed in Section 2, too. The architecture of the 
proposed system, method of feature selection and
preprocessing procedures are reported in Section 3.
Experimental results and conclusions are also drawn in 
Section 5 and 6, respectively.

CLASSIFICATION BASED 
ON ASSOCIATION RULE MINING

A hybrid system that combines an association rule 
mining algorithm and a MLP neural network is
proposed in this paper as misuse-based IDS. The
foundation of rule-based part of the system is reviewed 
in this section.

In the field of data mining, a classification
approach, called associative classification has been
proposed that achieves higher classification accuracy 
than traditional approaches such as C4.5 [15]. However, 
this approach suffers from low efficiency due to the 
facts that it often generates a very large number of rules 
and also its confidence-based rule evaluation measure 
may lead to over-fitting [16].

In this paper, a better approach, called CPAR is
used, that inherits the basic idea of first order inductive 
learner (FOIL) in rule generation and integrates the
features of associative classification in predictive rule 
analysis  [16].

Definitions: Let T be a set of tuples. Each tuple in T
follows the scheme (A1, A2, …, Ak), where A1, A2, …, Ak
are k  attributes. Each continuous attribute is first turned 
discrete into a categorical attribute.

Definition 1: (literal) A literal p is an attribute-value
pair, taking the form of (Ai, v), in which Ai is an 
attribute and v a value. A tuple t satisfies a literal 
p=(Ai, v) if and only if ti=v, where ti is the value of the 
ith attribute of t.

Definition 2: (rule) A rule, which takes the form of 
"p1 p2 … pl  c", consists of a conjunction of literals 
p1, p2, …, pl, associated with a class label c. A tuple  t
satisfies rule r's body if and only if it satisfies every

Input: Training set D = P N.
Output: A set of rules for predicting class labels for examples.
Procedure Predictive Rule Mining

Set the weight of every example to 1
Rule set R F
 totalWeight TotalWeight(P)
A  Compute PNArray from D
While TotalWeight(P) > d.totalWeight

 N' N, P' P, A' A
 Rule r  emptyrule
While true

find best literal p according to A'
if gain(p) < min_gain  then break
append p to r
for each example t in P' N' not satisfying r's body

remove t from P' or N'
change A' according to the removal of t

end
end

R R {r}
for each example t in P satisfying r's body

t.weight  a. t.weight 
change A according to the weight decreased

end
end
return R

Fig. 1: Predictive rule mining algorithm

literal in the rule. If t satisfies r's body, r predicts that t
is of class c. If a rule contains zero literal, its body is 
satisfied by any tuple. 

Definition 3: (PNArray) A PNArray stores the
following information corresponding to rule r:

• P and N: the numbers of positive and negative 
examples satisfying r's body.

• P(p) and N(p): for each possible literal p, the
numbers of positive and negative examples
satisfying the body of rule r', the rule constructed 
by applying p to r.

Predictive rule mining: The most time-consuming part 
of FOIL is evaluating every literal when searching for 
the one with the highest gain [16]:

P P
gain(p) P log log

P NP N

∗
∗

∗ ∗

 
 = −
 ++ 

(1)

where |P| and |N| are positive and negative examples 
satisfying the current rule r's body, respectively. After 
literal p is added to r, there are |P*| positive and |N*|
negative examples satisfying the new rule's body.

By using PNArray, the predictive rule mining
(PRM) algorithm (Fig. 1) achieves much higher
efficiency than FOIL on large datasets [15], such as 
KDD 99. In PRM, after an example is correctly covered 
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Table 1: Number of samples in KDD 99 datasets

KDD dataset DoS Probe R2L U2R Normal

10% 391458 4107 1126 52 97277
corrected 229853 4166 16347 70 60593
whole 3883370 41102 1126 52 972780

Table 2: Attack types and number of their samples in 10% KDD dataset

Category Type (Number of samples)

DoS smurf (280790), neptune (107201), back (2203), teardrop (979), pod (264), land (21) 
Probe satan (1589), ipsweep (1247), portsweep (1040), nmap (231)
R2L warezclient (1020), guess_passwd (53), warezmaster (20), imap (12), ftp_write (8), multihop (7), phf (4), spy (2)
U2R buffer_overflow (30), rootkit (10), loadmodule (9), perl (3)

by a rule, instead of removing it, its weight is decreased 
by multiplying a factor (a).

Rule generation in CPAR: In associative
classification, association rule mining is used to
generate candidate rules, which includes all conjunction 
of literals that meet the supported threshold. Then, a 
subset of rules is selected from the candidates. This 
subset is built by combining the best K rules for every 
example (K=1 in [15] and K=4 in [17]).

In PRM, every rule is generated from the
remaining dataset. Suppose an example t in the
remaining dataset is covered by a rule r that is just 
generated. We are not sure whether r is the best rule for 
t because r is generated by greedy algorithm and also 
from the remaining dataset instead of the whole dataset. 
PRM selects only the best literal and ignores all the 
others. The "best" rule among them may not be the best 
rule based on the whole dataset.

But CPAR stands in the middle between
exhaustive and greedy algorithms and combines the 
advantages of both. CPAR builds rules by adding 
literals one by one, which is similar to PRM. However, 
instead of ignoring all literals except the best one,
CPAR keep all close-to-the-best literals during the 
rule building process. So, at a certain step in the process 
of building a rule, after finding the best literal p,
another literal q that has similar gain as p (differs by at 
most 1%) may be found. Besides continuing building 
the rule by appending p to r, q is also appended to the 
current rule r to create a new rule r', which is pushed 
into the queue [16].

Rule evaluation: To evaluate the prediction power of 
rule r (r="p1 p2 … pl c"), the Laplace expected 
error estimate is used to estimate the accuracy of 
rules [16]:

LaplaceAccuracy = (nc+1)/(ntot+k) (2)

where k  is the number of classes, ntot is the total number 
of examples satisfying the rule's body, among which nc
examples belong to c, the predicted class of the rule.

Classification: Given a rule set containing rules for 
each class, the best K rules of each class is used and by 
comparing the LaplaceAccuracy of the best K rules of 
each class, the class with the highest accuracy is chosen 
as the predicted class.

KDD dataset: The KDD intrusion detection benchmark 
consists of three components (Table 1). Each of the four 
mentioned categories of attacks (DoS, Probe, R2L and 
U2R) represents generalizations of specific attack
types. These main categories represent classifications of 
types of behavior that can be grouped logically
together. So, for each category, there are multiple attack 
types. Table 2 lists the attack categories along with the 
attack types and number of samples in the 10% KDD 
dataset. As indicated in Table 2, "10% KDD" dataset 
contains 22 attack types. Each connection in KDD is 
characterized by 41 features. The descriptions, types
and value ranges of 19 sample features are listed in 
Table 3.

PROPOSED IDS ARCHITECTURE

Combination of CPAR and MLP neural network:
Benefits of the CPAR algorithm can be combined with 
those of the neural networks. The key idea is to take 
advantage of different abilities of neural networks, e.g. 
experienced by the author in another fields [18-22] and
knowledge-based algorithms [23] for intrusion
detection. The block diagram of proposed IDS is shown 
in Fig. 2. As shown in Fig. 2, at the output of proposed 
hybrid model, the attack types "neptun", "satan",
"guess_passwd" and "buffer_overflow" are chosen as
the detection objective from DoS, probe, R2L and U2R 
attack classes, respectively.
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Table 3: Description and value ranges of 19 sample features in KDD dataset
Feature Description Type Value ranges
duration Duration of the connection (in seconds) continuous [0,58329]
protocol_type Type of the connection protocol discrete 3 different symbols
service Service on the destination discrete 70 different symbols
flag Status flag of the connection discrete 11 different symb ols
src_bytes Number of bytes sent from source to destination continuous [0,1.3e+9]
dst_bytes Number of bytes sent from destination to source continuous [0,1.3e+9]
wrong_fragment Number of wrong fragments continuous [0,3]
urgent Number of urgent packets continuous [0,14]
hot Number of “hot” indicators continuous 0,101]
num_failed_logins Number of failed logins continuous [0,5]
num_compromised Number of “compromised” conditions continuous [0,9]
num_root Number of “root” accesses continuous [0,7468]
num_file_creations Number of file creation operations continuous [0,100]
num_shells Number of shell prompts continuous [0,5]
num_access_files Number of operations on access control files continuous [0,9]
count Number of connections to the same host as the current connection in the past two seconds continuous [0,511]
srv_count Number of connections to the same service as the current connection in the past two seconds continuous [0,511]
dst_host_count Number of connections having the same destination host continuous [0,255]
dst_host_srv_count Number of connections having the same destination host and using the same service continuous [0,255]

Fig. 2: Block diagram of proposed hybrid model for IDS
*R2L and U2R training samples are used for second experiment

There are many potential benefits of feature
selection (e.g. reducing training and utilization times)
[24]. So, in this paper the results of feature selection 
experiments reported in [25] are used in the feature 
selection box of Fig. 2. The brief overview of feature
ranking and selection in KDD dataset are described in 
the next subsection.

On the other hand, one of the difficulties in
applying association rules is involving datasets that 
contain continuous attributes. The preprocessing
procedures in two branches of Fig. 2 are detailed in the
next subsection.

Feature selection: Elimination of less significant
features lowers the load of CPAR, enhancing the
accuracy of detection and speeding up the computation, 
thus improving the overall performance of IDS.

Logistic regression has been used to rank the
features based on the Chi-square values for different 
subsets selected using best subset selection model [25].
The higher the Chi-square value, the higher is the
ranking. In Table 4 the ranking results of the Chi-square
test on KDD dataset are listed for the 16 most
significant features which are used as the inputs to 
CPAR algorithm, after preprocessing.

Table 4: Chi-square values of input features with respect to the 
attack class

Attack type
------------------------------------------------

Feature DoS Probe R2L U2R
dst_host_diff_srv_rate 1334.82 3686.28 1114.09 2531.96
rerror_rate 1016.26 2734.53 1016.54 613.39
dst_host_srv_rerror_rate 967.87 2707.66 586.24 301.06
srv_rerror_rate 805.55 2515.68 583.34 244.92
dst_ host_rerror_rate 732.80 2251.96 560.59 207.83
diff_srv_rate 551.75 1228.26 350.12 39.88
dst_host_same_srv_rate 449.23 793.25 311.15 39.16
service 438.75 588.68 249.51 36.74
dst_host_srv_count 433.03 546.12 239.16 32.61
logged_in 363.64 427.17 141.75 25.15
dst_host_srv_diff_host_rate 353.49 422.29 141.31 25.01
srv_count 344.88 123.40 141.22 15.46
same_srv_rate 336.85 91.77 126.07 15.33
protocol_type 328.69 84.58 125.02 10.68
num_compromised 308.37 70.40 116.02 10.26
wrong_fragment 275.58 68.62 99.83 6.35

Preprocessing: Features in the KDD datasets have
different forms: discrete, continuous and symbolic,
with significantly varying resolution and ranges. Most 
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Table 5: Distribution of training and test samples
Attack Number of Number of
type training samples test samples

neptune 10720 6294
satan 159 96
guess_passwd 53 45
buffer_overflow 30 25
Normal 9728 6059

Table 6: Cost matrix values for KDD 99

Predicted
----------------------------------------------------------------

Actual DoS Probe R2L U2R Normal

DoS 0 1 2 2 2
Probe 2 0 2 2 1
R2L 2 2 0 2 4
U2R 2 2 2 0 3
Normal 2 1 2 2 0

pattern classification methods are not able to process 
data in such a format. Hence, preprocessing is required. 
First, we describe the preprocessing of 41 input features 
to MLP. Then, the preprocessing details of selected 
features, input to CPAR, are reported.

Symbolic-valued features, such as "protocol_type",
"service" and "flag" are mapped to integer values 
ranging from 0 to S-1, where S is the number of
symbols. Continuous features having smaller
integer value ranges like "wrong_fragment", "urgent",
"hot", "num_failed_logins", "num_compromised",
"num_root", "num_file_creations", "num_shells ",
"num_access files", "count", "srv_count",
"dst_host_count"  and "dst_host_srv_count" are also
scaled linearly to the range [0,1].

Logarithmic scaling (base 10) is applied to three 
features spanned over a very large integer range,
namely "duration", "src_bytes" and "dst_bytes", to 
reduce the ranges. Other features are either Boolean,
like "logged_in", having binary values, or continuous, 
like "diff_srv_rate", in the range of [0,1] and no scaling 
is needed for these features. So, each of the mapped 
features are linearly scaled to the range [0,1]. 

As seen in CPAR foundations, the usage of
association rules requires a discrete set of items. These 
items are literal values of the dataset attributes. In order 
to use association rules on continuous attributes, the 
attributes must first be turned discrete. To this end, in 
the 16 selected features, the continuous ones are
partitioned into equal-sized partitions by utilizing equal 
frequency intervals [26]. In equal frequency intervals 
method, the feature space is partitioned into an arbitrary 
number of partitions where each partition contains the
same number of data points. In other words, the range

of each partition is adjusted to contain I dataset 
instances. If a value occurs more than I times in a 
feature space, it is assigned a partition of its own. In 
“10% KDD” dataset, certain classes such as DoS
attacks and normal connections occur in order of
hundreds or thousands, whereas other classes such as 
U2R and R2L attacks occur in order of tens or
hundreds. Therefore, to provide sufficient resolution for 
the minor classes, I is set to 10.

EXPERIMENTAL RESULTS

33209 records from KDD 99 dataset were 
chosen for our experiments. 20690 of them built the 
training set and the rest (12519 samples) built the test 
set (Table 5).

Two experiments were performed based on the
structure shown in Fig. 2: using only the MLP classifier
(upper branch) for all classes, and using the full
structure (hybrid CPAR/MLP classifier).

Before discussing about the results of experiments, 
it seems necessary to mention the standard metrics that 
have been developed for evaluating IDS. Detection rate 
(DR) and false alarm rate (FAR) are the two most 
common metrics. DR is computed as the ratio between 
the number of correctly detected attacks and the total 
number of attacks, while FAR is computed as the ratio 
between the number of normal connections that is 
incorrectly misclassified as attacks and the total number 
of normal connections.

For the purpose of classifier algorithm evaluation, 
another comparative measure is defined which is cost 
per example (CPE) [27]. CPE is calculated using the 
following formula:

m m

i 1 j 1

1CPE CM(i,j).C(i,j)
T = =

= ∑∑ (3)

where CM and C are confusion matrix and cost matrix, 
respectively. T represents the total number of test 
instances  and m is the number of classes in
classification. CM is a square matrix in which each 
column corresponds to the predicted class, while rows 
correspond to the actual classes. An entry at row i and 
column j, CM(i,j) , represents the number of
misclassified instances that originally belong to class i,
although incorrectly identified as a member of class j.
The entries of the primary diagonal, CM(i,i), stand for 
the number of properly detected instances. Cost matrix 
is similarly defined, as well and entry C(i,j)  represents 
the cost penalty for misclassifying an instance
belonging to class i into class j. Cost matrix values 
employed for the KDD 99 classifier learning contest are 
shown in Table 6 [10].
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Table 7: Confusion matrix of MLP classifier
Predicted
------------------------------------------------------------------------------------------------------------------------------------------

Actual neptune satan guess_passwd buffer_overflow Normal

neptune 6040 4 0 0 250
satan 10 75 0 0 11
guess_passwd 0 0 3 0 42
buffer_overflow 0 1 4 0 20
Normal 43 35 12 0 5969

Table 8: Confusion matrix of CPAR/MLP classifier

Predicted
------------------------------------------------------------------------------------------------------------------------------------------

Actual neptune satan guess_passwd buffer_overflow Normal

neptune 6036 6 0 2 250
satan 8 77 0 0 11
guess_passwd 2 0 19 0 24
buffer_overflow 2 4 0 14 5
Normal 49 36 10 1 5963

Table 9: Performance of proposed models for intrusion detection

Classification rate
-----------------------------------------------------------------------------------------------------

Model neptune satan guess_ passwd buffer_ overflow Normal DR FAR CPE
MLP 95.96 78.13 6.67 0.00 98.51 94.71 1.49 0.0733
CPAR/MLP 95.90 80.20 42.22 56.00 98.42 95.14 1.58 0.0655

In the first experiment, a MLP with a hidden layer 
of 40 neurons with tangent-sigmoid activation function, 
five linear output neurons (representing 4 attack types
and 1 normal category) and 41 external input nodes, 
was used. Levenberg-Marquardt (LM) was used as the 
training function in this experiment, utilizing MATLAB 
Neural Network Toolbox. The confusion matrix of this 
classification method is shown in Table 7.

In the second experiment, the combined structure 
of CPAR/MLP, depicted in Fig. 2, was used for
classification. In this experiment, the parameters of
CPAR in rule generation algorithm were set as: =0.05,
min_gain=0.7 and =2/3. The best four rules were used 
in prediction, too. The MLP had 41 external input 
nodes, 35 neurons in hidden layer and five output 
neurons,  as well. The confusion matrix of this hybrid 
classifier is shown in Table 8.

By applying 12519 test samples (Table 5), the
performance of MLP and combined CPAR/MLP
classifiers has been compared (Table 9).

CONCLUSIONS

In this paper, a hybrid structure was introduced 
for IDS that combined classification-based

association rule approach with a connectionist
model. Most of the machine learning algorithms offered 
an acceptable level of classification rate for DoS and
probe attack categories and demonstrated poor
performance on the R2L and U2R categories [11]. As 
shown in Table 9, the proposed hybrid CPAR/MLP 
classifier demonstrates better rates in mentioned
categories. DR and CPE of the proposed hybrid system
are better than MLP classifier, too. FAR of the
proposed hybrid architecture is higher than MLP
classifier. However FAR of the model is still better than 
many models (e.g. K-means with 6.21% FAR [28] and 
radial basis function (RBF) neural classifier with 3.85% 
FAR [29]).
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