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Abstract: Firewalls are essential components in network security solutions. Managers have to specify their 
organizational security policies using low level and order-dependent rules in firewalls. Furthermore, 
dependency of firewalls to the network topology, frequent changes in network topology and lack of an 
automatic method for analysis and verification of anomalies in specified security policy lead to
inconsistencies and security holes. In this paper we present a formal language for specification of security 
policy in firewalls. Based on the language, the specified security policy, simple anomalies and total 
anomalies are translated to propositional logic formulas. Furthermore we have designed and implemented a 
tool based on theorem proving for detection of the anomalies in the specified policy. In addition, based on 
the formal model, two algorithms are presented for resolving anomalies in the policy. These algorithms 
minimize the number of rules without changing the security policy.
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INTRODUCTION

Firewalls are the main security devices for securing 
computer networks. Although using firewalls is a useful 
method to satisfy security policy of an organization, 
precise specification of security requirements is vital for 
accuracy of firewall operations. This may occur due to 
the notations and the language which is used to define 
the requirements; which is currently based on an
ordered set of rules. Experiments show that the
complexity of working with rules, due to their low level 
of abstraction and conflicts between them, results in 
miss-configuration of firewalls and potentially security 
holes for the organization [1].

In the most cases, a firewall administrator should 
consider the anomalies of the rule database. As rule sets 
become larger and more complex, administrators cannot 
prevent all of the anomalies [2]. An automatic analysis 
of anomalies in a firewall rule database is necessary for 
improving the semantics of security policy and also
discovering the extra rules in the database and finally 
optimizing the performance of policy matching in
firewalls.

This paper presents a security model with an
inherent compatibility with overall design of most
firewalls. Applying the security model does not force 
any change in the firewall design. A formal language is 
designed to express security requirements. Due to
common applications of Deontic logic in security
models [3], it is used as a basis for specifying the syntax 
and semantics of the language. Security policy is
specified using Deontic formulas.

On the other hands, for discovering and 
resolving the anomalies in the specified security 
policy, we present a formal model based on
propositional logic. Thus we translate each
Deontic formal in specification language to a
propositional logic formula. In addition, we present a 
formal definition of simple and total anomalies in the 
security policy. The simple anomalies are defined
between two security propositions and total anomalies 
can be defined between one proposition and a set of 
propositions [4].

For discovering anomalies in a specified security 
policy, we present a state machine, two detection
algorithms and also a tool based on Binary Decision 
Diagram (BDD) for automatic verification of the
detection process. This tool is a proof assistant for 
propositional logic used for satisfying anomaly
theorems based on our formal model.

For Resolving anomalies in a specified security 
policy, we offer two algorithms. These algorithms lead 
to decrease the number of rules without changing the 
policy.

The rest of this paper is organized as follows.
Section 0 reviews related works. In section 0, our
security   policy   specification   language   is  presented.
Section 0 describes our formal model for specifying 
anomalies. Section 0 presents the state machine and 
algorithms for anomaly discovery and resolution.
Section 0  presents conclusions  and  our  plans for 
future work.
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RELATED WORK

We categorized the existing security policy
specification methods in [5]. In [6], the security policy is 
specified formally based on the information flow. A 
security policy consists of a set of information classes 
and constraints on flow of information. The constraints 
are specified by a specific type of logic called branching 
time temporal logic [7].

In [8], a security policy is specified as a specific 
case of a regulation. The system to be regulated
consists of agents which can execute actions on some 
objects. Each role is associated with a set of norms 
(permissions, obligations and prohibitions). An agent 
can play one or more roles. In this approach, regulation 
is specified using a logic based on SDL (Standard 
Deontic Logic).

LaSCO (the Language for Security Constraints on 
Objects) [9] is a language for specifying policy as a 
directed graph. The semantics of the language was 
represented by a first ordered logic.

There are numerous studies on conflict detection 
and resolution in firewall security policy. This problem 
can be raised on router, VPN and firewall configuration. 
We proposed formal modeling approach to specify and 
verify two specific types of conflict in firewall security 
policy included covering and consistency [5].

A famous classification of anomalies in firewall rule 
database is proposed in [2]. They presented four
category of anomalies contained shadow, correlation, 
generalization and redundant. They used a set theory 
based model for defining the anomalies. All the
anomalies are defined between two rules and not cover 
two set of rules.

A model based on relational algebra and raining 2D-
Box presented in [10]. Using complex operators in 
relation algebra can increase the time complexity of
detection algorithm. The main parameter for anomaly 
detection in [11] is the order of rules in database. In this 
research, a technique for resolving anomalies is
proposed. A high level language for specifying security 
policy in firewall based on expert systems is presented 
in [12]. Anomaly detection in [13, 14] has proposed 
based on set theory and regular expressions. In this 
work, total anomalies are not considered.

Authors in [15-17] presented different classification 
for possible policy conflicts. For example, classification 
for anomalies in [15] is based on Coq [18]. Total
anomalies are not considered in these works.

A logical framework for anomaly detection 
presented in [19]. In [20] an ACLA framework
for detection and resolution of anomalies
proposed. A decision tree based solution
presented in [21] for analyzing firewall anomalies.
FIREMAN tool is developed  for  static  analysis  of
conflicts in firewall [18]. This tool is designed based on
binary decision diagrams. Total anomalies are not
considered in this tool. In [22] a scheme for conflict 
resolution is presented based on the idea of adding 
resolve filters.

Firmato and Fang [23, 24] are a set of firewall
management and analysis tools that interact with
administrator on queries about firewall rules. The tools 
specify security policy in stateful packet filtering
independent of network topology.

SECURITY POLICY SPECIFICATION LANGUAGE

Main requirements in selecting a method for
security policy specification in firewalls are:

• Separating the security policy from the network 
topology.

• A high level language for defining security policy 
considering all functionalities of all firewalls.

• Automatic generation of firewall rule bases using 
the specified security policy.

• A method for verification of security policy.

Based on the above requirements, we
propose a method for security policy specification
in firewalls. A language based on the Deontic logic is 
the core of our method. The language supports
separation of the security policy from the network
topology as well as automatic generation of an existing 
firewall rules.

Syntax of the language: The syntax of our
proposed security policy specification language
covers two parts:

• Security policy specification
• Network topology specification

At first, security policy is specified regardless of 
network topology and then network topology is
specified. A security policy in firewalls defined as a 
hexad (R, Op, S, T, P, A) such that:
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• R is a finite set of roles.
• Op is a set of relations on roles. For example,

inheritance is a relation. If role x inherits from role y, 
then all hosts playing role x will do play role x.

• S is a finite set of services in network.
• T is a finite set of time periods.
• P is a finite set of primitive propositions. The

propositions specify connections. On the other
hand, each proposition introduces a set of
connections between two roles. For example, a
proposition can be tsx y→ ; where x and y are 
roles, s is a service and t is a time period. This 
proposition represents all connections from role x 
to role y with service s at time period t. Operator →
specifies direction of connections. Other operators 
for this concept are ← and ↔.

• A is a sequence of security propositions; each 
proposition is a Deontic logic formula. The
propositions are main part of security policy
specifications.

We presented more operators for supporting
masquerading, content security, authentication and
logging in the formal language [5].

Network  topology  is  specified  as  a  set  of
tuples 〈r, I〉 where:

• r is an element from R; defined in the security policy 
specification.

• I is a range of IP addresses. Those hosts with IP 
addresses in I, play role r.

Semantics of the language: To simplify the language 
semantics, we assume the functionality of the firewall is 
restricted to a stateful packet filter, saving the state of 
all active connections. Such a firewall can simply be 
modeled as a state transition machine. Variables
corresponding to the states are vectors saving
information of active connections. Each connection can 
be represented by a state transition machine [25].

An active connection C can be specified as a triple 
(ΣC, τC, I0C), where:

• ΣC is a finite set of states for a connection
• τC is a transition relation ΣC→ΣC

• I0C is an initial state of a connection

A firewall can be specified as a composition of 
active connections. Accordingly, the firewall F is a state 
transition machine (ΣF, τF, I0F) such that:

( )
( )
( )
( )
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As security policy in firewalls is specified at the 
lowest level based on connections, semantics of the 
language can use only the first level of the state
transition machine. To represent the semantics, first we 
define the matching function ρ, followed by defining 
how to apply security policy via a single state. Finally 
applying security policy by a state transition machine is 
defined.

Assume that the set of truth-values is B = {Accept, 
Reject, NoMatch}. Function π maps a primitive
proposition to the set of its matching connections. The 
matching function ρ returns result of matching a
connection with a security proposition. Matching a
connection c with security proposition π denoted as ρ
(c, φ, π) and is defined as:

• If φ = pX and c∈π (X), then the result is Accept, 
otherwise is NoMatch.

• If φ = FX and c∈π (X), then the result is Reject, 
otherwise is NoMatch.

A state s of the state transition machine (ΣF, τF, I0F)
satisfies security policy SP, if and only if for each 
connection  c  in  s,  there  exists  a security proposition 
π in SP such that ρ (c, φ, π) = Accept and there not exist 
any security proposition π in SP such that ρ (c, φ, π) = 
Reject. A state transition machine (ΣF, τF, I0F) satisfies 
SP,  if  and  only  if  all  states  in  the  machine  satisfy 
the policy.

The semantics described so far can be extended to 
cover all features provided by the language including 
application gateways, time and NAT. We used the
semantics to show that specifications accepted by the 
language are applicable and consistent [5].

FORMAL SPECIFICATION OF ANOMALIES

Based on the syntax of our language, security 
propositions are translated into propositional logic
formulas. Then a theorem is defined for each anomaly in 
the formulas. Each theorem is also a propositional logic 
formula. For proving the existence of each anomaly in 
policy, we prove validity of the appropriate theorem
using a proof assistant.
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Reference [2] defines anomalies in four categories 
that include Shadowing, Correlation, Generalization and 
Redundancy. It classifies different anomalies that may 
exist between two filtering rules in one firewall and then 
describes a technique for discovering these anomalies.

In this section we represent the anomalies defined 
in [2] based on our model for specifying security policy. 
Also we define new anomalies that may exist among 
more than two security propositions. These anomalies 
may happen between two subset of security proposition 
set in firewalls. Thus we defined total version of
anomalies defined in [2].

Translation of security propositions: Consider the
complication of automatic proof in Deontic logic
formulas [26]; we translate security propositions into 
propositional logic formulas. The result of this
translation is used for generating theorems.

Considering the security policy for a stateful packet 
filtering firewall, the key components in security
propositions are contained roles, service, direction and 
action.

In order to translate a security proposition to a 
logical formula, we must translate each attribute of it and 
then conjunct the translated parts. Since the attributes 
of a security proposition have different meanings,
translation needs different conjunction operators.

The idea is representing numbers as a bit sequence.
For example, a port number in TCP protocol is a number 
between 0 and 65535; just a sequence of bits. A number 
of Boolean variables and expressions are introduced to 
represent the information in security propositions. Each 
field is assigned to a number between 0 and n-1. The 
number can be represented in n

2m log=  bits and so we 
introduce m variables v0…vm to encode the field.

According to the syntax of the proposed language, 
there are two roles in the security proposition. Each role 
is  assigned to a set of IP addresses. Each IP address 
includes 32 bits. We introduce 32 variables of the form 
s0…s31 for the first role (remind the first role) and 32 
variables of the form d0…d31 for the second role (remind 
it). A range of addresses can be translated using the 
disjunction operator.

For example, when the IP address of the first role is 
192.168.20.1, it can be represented in the binary form 
11000000.10101000.00010100.00000001 and can be
translated in the following form.

0123456789101112131415

16171819202122232425262728293031

ssssssssssssssss
ssssssssssssssss

′′′′′′′′′′′′′
′′′′′′′′′′′

1. Translate s into s[0] … s[31]
2. Translate m into m[0] … m[31]
3. result = true
4. for  i = 0 to 31 do
5. if m[i] =1 then
6. Result = result and s[i]
7. if m[i] =0 and s[i] =1 then
8. Result =false; return
9. end of  for

Algorithm 1: Translating an IP address with mask
In many cases, the address range is defined using 

masks. The Algorithm 1 is used for translating the range 
address s [0…31] with mask m [0…31].

The service component contains the protocol type 
and the port number. Protocol type can be either TCP or 
UDP. One variable named l is introduced for translating 
the protocol type. Thus the values of TCP and UDP are 
represented with l and l′. Port numbers can be specified 
using 16 Boolean variables of the form p0,…,p15.

The direction component is translated into a single 
bit presented by the Boolean variable c. The component 
has three values and is translated as follows:

• For value →, this is translated to c.
• For value ←, this is translated to c.
• For value ↔, this is translated to TRUE.

Using the described method, the security
proposition can be presented by a Boolean expression. 
The expression is defined by conjunction of its
components. Equation (1) shows the general form in 
translation of a security proposition in firewalls.

                             Condition ⇒ Action (1)

where C is the condition part and A is the action part of 
a translated security proposition. The condition part is 
defined as conjunct Boolean expressions of translating 
roles, service and direction of the security proposition. 
Therefore we can represent the last equation in form of 
equation (2). In this equation, each Xi specifies an 
attribute in the security proposition.

ACCC
nXXX ⇒∧∧∧ ...

21 (2)

In the simplified case of a packet filtering firewall, a 
bit named g in introduced for specifying the action part. 
For a security proposition in the form PX, action part 
will be considered as g and for a security proposition in 
the form FX, the action part will be considered as g ′.

The following sub-sections describe using of this 
method for defining the theorems and verifying
anomalies in security policy.
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Shadow anomaly: Proposition P1 is shadowed by
previous  proposition  P2  if proposition P2 matches all 
the   connections   that   match   the   proposition   P1

and  the  two  propositions  have  different  filtering 
actions [2].

Formally, Proposition P1 is shadowed by
proposition P2 if the following condition holds:

1 1 1

2 2 2

P : C A
P : C A

⇒
⇒

(3)

( ) ( )1 2 1 2 1 2P , P SP A A C C∃ ∈ • ¬ ⇔ ∧ ⇒

Equation (3) shows that we must verify the
correctness of the equation for each two propositions in 
the security policy (SP). In this equation, P1 and P2 are 
two different proposition and SP is security policy.

Total shadow anomaly: Proposition P  is totally
shadowed by a set of previous propositions if the
previous propositions match all the connections that 
match the proposition P1 and the proposition P1 has 
different filtering action rather than the previous
propositions [4].

Formally, proposition Pn is shadowed by
propositions P1  Pk if the following condition holds:

1 1 1

2 2 2

n n n

P : C A
P : C A

P : C A

⇒
⇒

⇒


(4)

( )
( ) ( )

( )

1 2 k n n 1

1 2 k 1 k

n 1 2 k

P , P , , P , P SP A A

 A A A A

 C C C C
−

∃ ∈ • ¬ ⇔

∧ ⇔ ∧ ∧ ⇔

∧ ⇒ ∨ ∨  







In the equation (4), propositions P1… Pk are in the 
upper order than proposition Pn. Also proposition Pn is 
totally shadowed by propositions P1…Pk if the
correctness of equation (4) is proved.

Correlation anomaly: Two security propositions in the 
security policy are correlated if they have different 
filtering actions and the first proposition matches some 
connections that match the second proposition and also 
the second proposition matches some connections that 
match the first proposition [2].

Formally, proposition P1 and proposition P2 have a 
correlation anomaly if the following condition holds:

1 1 1

2 2 2

P : C A
P : C A

⇒
⇒

(5)

( )
( ) ( ) ( )

1 2 1 2

1 2 2 1 1 2

P , P SP A A

 C C C C C C

∃ ∈ • ¬ ⇔

∧¬ ⇒ ∧¬ ⇒ ∧ ∨  

By using the equation (5), we could find all
correlation anomalies between propositions in security 
policy. In [2], set theory is used for formal definition of 
anomalies and it couldn’t detect the correlation anomaly 
in some special cases.

For correlation anomaly, it is not required to define 
total anomaly, because all cases for correlation anomaly 
can be detected by definition of the anomaly between 
two rules.

Generalization anomaly: Proposition P1 is a
generalization of a preceding proposition P2 if they have 
different actions and if the Proposition P2 can match all 
the packets that match the proposition P1 [2].

Formally, proposition P1 is a generalization of
proposition P2 if the following condition holds:

1 1 1

2 2 2

P : C A
P : C A

⇒
⇒

(6)

( ) ( )1 2 1 2 1 2P , P SP A A C C∃ ∈ • ¬ ⇔ ∧ ⇒

Equation (6) shows that we must verify the
correctness of the equation for each two propositions in 
the security policy. Generalization is often used to 
exclude a specific part of the traffic from a general
security proposition therefore, it is only considered an 
anomaly warning and we can’t remove the anomaly from 
the security policy.

Total generalization anomaly: Proposition P1 is a total 
generalization of a set of further propositions if the 
further propositions match all the connections that 
match the proposition P1 and the proposition P1 has 
different filtering action rather than the further
propositions [4].

Formally, proposition Pn is total generalization of a 
set of propositions P1…Pk if the following condition 
holds:

1 1 1

2 2 2

n n n

P : C A
P : C A

P : C A

⇒
⇒

⇒


(7)
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( ) ( )
( )
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In the equation (7), propositions P1… Pk are in the 
lower order than proposition Pn. Also proposition Pn is 
total generalization of propositions P1… Pk, if the
correctness of equation (7) is proved.

Redundancy anomaly: Proposition P1 is redundant to 
proposition P2 if they have same actions and if the 
proposition P2 can match all the connections that match 
the proposition P1 [2].

Formally, proposition P1 is redundant to
proposition P2 if the following condition holds:

1 1 1

2 2 2

P : C A
P : C A

⇒
⇒

(8)

( ) ( )1 2 1 2 2 1P , P SP A A C C∃ ∈ • ⇔ ∧ ⇒

Equation (8) shows that we must verify the
correctness of the equation for each two propositions in 
the security policy. Although redundancy is sometimes 
preferred, we consider it an error in the firewall security 
policy because a redundant proposition increases
unnecessary overhead to the matching process.

Total redundancy anomaly: Proposition P1 is a total 
redundant of a set of propositions if the set of
propositions match all the connections that match the 
proposition P1 and the proposition P1 and the set of 
propositions have the same filtering action [4].

Formally, proposition Pn is a total redundant of a set 
of propositions P1… Pk if the following condition holds:

1 1 1

2 2 2

n n n

P : C A
P : C A

P : C A

⇒
⇒

⇒


(9)
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

In the equation (9), proposition Pn is total
redundant of propositions P1…Pk, if the correctness of 
the equation is proved.

ANOMALY DISCOVERY AND RESOLUTION

In this section, we present two algorithms for
detecting simple and total anomalies. These algorithms 
are based on the theorems specified in section 0. Also, 
we provide two algorithms for resolving these
anomalies.

Detection algorithms: For detection of each anomaly, 
we must prove the correctness of the appropriate
theorem. For proving the simple anomalies, each couple 
of propositions is selected. A simple anomaly is
discovered as long as the appropriate theorem for the 
couple of propositions is satisfied. For proving a total 
anomaly, we will select a proposition and a set of
propositions as input for appropriate theorem. Since the 
anomaly theorems are specified with logical formulas, 
we design a proof assistant to prove these theorems.
This proof assistant is designed for satisfying a
propositional logic formula.

A successful idea for proving propositional
formulas that comes from semantics of the logic is that 
of binary decision diagrams, or BDDs [27, 28]. We might 
say that they are a recent invention, as the originator of 
BDDs as we know them today was Randall E. Bryant in 
1986 [26]. In our proof assistant, we use the BDD idea.

Figure 1 shows the state machine for anomaly 
detection in a security policy based on our definition for
each anomaly. This state machine can satisfy detection 
of total anomalies. The state machine is started for two 
propositions. For example, we apply this machine for 
policy insertion time and analyze anomalies for new 
security proposition with all propositions in the policy. 
At the start state of the machine, two actions are
compared. We must search for redundancy anomaly as 
long as the actions of two propositions are equivalent; 
otherwise we check three anomalies shadow,
generalization and correlation. The order of detection of 
the three anomalies is important for optimization of
analysis process.

When the two propositions have the same action, 
we check the equation (8) for analyzing redundant 
anomaly. In this situation, if two propositions are not 
redundant, they have not any anomaly and the state 
machine changes to “No Anomaly” state. If the two 
propositions have different actions, we must check the 
equations (3), (6) and (5).

We run the detection process in policy insertion 
process. In this time, the detection algorithms will be 
invoked  for  new  propositions  and  all  propositions  in 
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Fig. 1: State machine for discovering anomalies

database and also for new proposition and all subset of 
propositions in database. Thus we must create logical 
formulas and use BDD for satisfying them.

Based on state machine in Fig. 1, we present two 
algorithms for analyzing simple and total anomalies.
Algorithm 2 discovers simple anomalies. The inputs of 
the algorithm are the new proposition Px and the order 
of the proposition in database. In the first part of the 
algorithm, we translate the new proposition Px to create 
two parts Cx and Ax (line 2). We search for all
propositions in database and check the anomalies
formula based on the state machine (Fig. 1). The
function BDD_Satisfy is used in two algorithms for 
satisfying a logical formula. Thus the input of the
function is a formula in propositional logic and the 
output of the function is a Boolean value (TRUE or 
FALSE).

Algorithm 3 uses the new proposition Px and its 
order in security policy to discover any total anomalies. 
This algorithm has two main steps for checking higher 
order and lower order propositions. In the first step, the 
new proposition and a set of lower order propositions
are checked for total generalization and total
redundancy anomalies (lines 4-15). In the second step of 
Algorithm 3, the new proposition and higher order
propositions are checked for total shadow and total 
redundancy anomalies (lines 17-28).

1.DetectionSimpleAnomaly (Px , order)
2. Px translated to Cx, Ax
3. for each Pi in SP
4. Pi translated to Ci , Ai
5. if orderi > order then
6. C1=Ci, C2=Cx, A1=Ai , A2=Ax
7. else
8. C1=Cx, C2=Ci, A1=Ax, A2=Ai
9. if not BDD_Satisfy ( A1 ? A2) then
10. if BDD_Satisfy (C2 ? C1 ) then
11. print "Shadow Anomaly ( Px, Pi)", Return
12. if BDD_Satisfy (C1 ? C2 ) then
13. print "Generalization Anomaly (Px, Pi )", Return
14. if BDD_Satisfy (C1 ? C2) then
15. print "Correlation Anomaly (Px, Pi)", Return
16. if BDD_Satisfy (C2 ? C1 ) then
17. print "Redundancy Anomaly (Px, Pi )", Return
18. print "There is no Simple Anomaly with existent propositions."
19. end DetectionSimpleAnomaly

Algorithm 2: Simple anomalies discovery

Resolving algorithms: Regarding the main reason of 
analysis of anomalies in firewall propositions, the
resolving algorithms are presented for optimizing
security policy. We propose a new scheme for conflict 
resolution, which is based on the idea of removing 
resolve security propositions. Therefore, we resolve the 
anomalies that lead to decrease the number of
propositions in security policy.
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1. DetectionTotalAnomaly (????, order)
2. translate ???? to ????, ????
3. totalR=False; R=Ø; totalG=False; G=Ø;
4. for each Rule ????with lower priority than order in RDB
5. translated ????to ????, ????
6. if not BDD_Satisfy (???? ? ????) then
7. totalG = totalG ? ????
8. ?? = ??? ??????
9. if BDD_Satisfy ( ???????????? ? ????)
10. print "Total Generalization Anomaly (????, ??)", Return
11. if BDD_Satisfy (Ax ? Ai ) then
12. totalR = totalR ? ????
13. ?? = ??? ??????
14. if BDD_Satisfy ( ???????????? ? ????)
15. print "Total Redundancy Anomaly (????, ??)", Return
16. totalR=False; ??= Ø; totalS=False; ?? = Ø;
17. for each Rule ????with higher priority than order in RDB
18. translate ????to ????, ????
19. if not BDD_Satisfy (???? ? ????) then
20. totalS = totalS ? ????
21. ?? = ??? ??????
22. if BDD_Satisfy ( ???????????? ? ????)
23. print "Total Shadow Anomaly (????, ??)", Return
24. if BDD_Satisfy (???? ? ????) then
25. totalR = totalR ? ????
26. ?? = ??? ??????
27. if BDD_Satisfy ( ???????????? ? ????)
28. print "Total Redundancy Anomaly (????, ??)", Return
29. print "There is no TotalAnomaly with existent rules."
30. end DetectionTotalAnomaly

Algorithm 3: Total anomalies discovery

Due to optimization purpose for resolving
anomalies, we did not consider correlation and
generalization conflicts. We only issue a warning for 
detecting these anomalies. In contrast, resolving each 
shadow or redundant anomalies lead to remove a
proposition without changing in security policy.

We present two algorithms for resolving simple and 
total anomalies. Algorithm 4 resolves simple anomalies. 
The input of the algorithm is the security policy SP. In 
this algorithm, each two propositions in the security 
policy are checked for simple shadow and simple
redundant anomalies. If one of the anomalies is
discovered, the lower proposition in the policy is
removed, because the proposition cannot be matched. 
For discovering the anomalies, we use the formal
method in the last section. Therefore, a part of state 
machine in Fig. 1 is used in Algorithm 3 (lines 10-15).

Algorithm 5 uses the security policy SP to resolve 
total shadow and total redundant anomalies. This
algorithm has two main steps for checking these two 
total anomalies. In the first step, the selected
proposition and a set of lower order propositions are 
checked  for  total  redundancy  anomalies  (lines 3-8). In 

1.ResolveSimpleAnomaly (SP)
2. for each Pj in SP
3. Pj translated to Cj, Aj
4. for each Pi in SP except Pj
5. Pi translated to Ci , Ai
6. if orderi > orderj then
7. C1=Ci ,C2=Cj , A1=Ai, A2=Aj
8. else
9. C1=Cj, C2=Ci , A1=Aj, A2=Ai
10. if not BDD_Satisfy (A1 ? A2) then
11. if BDD_Satisfy (C2 ? C1) then
12. Remove (R2), Return
13. if BDD_Satisfy (A1 ? A2) then
14. if BDD_Satisfy (C2 ? C1 ) then
15. Remove (P2), Return
16. end ResolveSimpleAnomaly

Algorithm 4: Resolving simple anomalies

the second step of Algorithm 5, the selected proposition 
and higher order propositions are checked for total
shadow and total redundancy anomalies (lines 9-18). If 
one of the total anomalies is discovered, the selected 
proposition in security policy is removed, because the 
proposition cannot be matched.

Experimental results: We implemented our algorithms 
using C#. Our experiments were carried out on a desktop 
PC running Windows Vista with 512M memory and Intel 
Pentium PIV 2.8 GHz processor.

In order to obtain performance of our firewall
anomaly discovery algorithms, ten sets of firewall
security propositions are generated. The number of
propositions in each set was various from 100 to 100000 
propositions. We used the presented discovery
algorithms to analyze each security policy. In each test 
case, we measured the processing time needed to
produce the anomaly analysis report.

Table 1 shows the summary of our experimental 
results. Figure 2 shows the results when running the 
single anomaly discovery algorithm. Furthermore the 
results of performance evaluation of total anomaly
discovery algorithm are shown in Fig. 3. The increase in 
the processing time as the rule database size increases 
is due to the fact that the complexity of our algorithm is 
dependent on the number of propositions in the
security policy of the firewall. Our results indicate that 
in the worst case, the single anomaly detection process 
takes 15-2562 ms of processing time to analyze a
security policy of 100-100000 propositions and single 
anomaly detection process takes 16-2453 ms of
processing   time   to   analyze  a  security  policy  of
100-100000  propositions.  Compare  to  the  other works,
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Table 1: Processing time (milisecond) for simple and total anomaly discovery

Simple anomaly Total anomaly

----------------------------------------------------------------------------- ------------------------------------------------------

Propos. No. Shadow Correlation Generalization Redundancy Shadow Generalization Redundancy

101 15 15 15 15 16 16 16

201 15 15 15 15 16 16 16

501 15 16 16 16 16 16 16

1001 16 16 16 16 16 15 15

2001 31 32 31 31 31 32 31

5001 78 96 94 78 78 78 78

10001 187 172 184 172 157 156 135

20001 453 454 438 422 359 312 375

50001 1078 1125 1109 1312 1047 1063 1000

100001 2562 2250 2156 2313 2078 2000 2453

we got a lowest time to analyze the anomalies in firewall 
policies and the more the number of the propositions, 
the more evident it take effects. Moreover, the
algorithms proposed in this paper are not limited to the 
number of anomalies in the security policy of firewalls. 
The results in Table 1 show that the processing time of 
the discovery algorithm for simple anomalies is very 
close to the performance of discovery algorithm for total 
anomalies in a firewall containing an equivalent number 
of security propositions.

CONCLUSION AND FUTURE WORKS

In this paper, we have presented a novel technique 
for specification and verification of anomalies in
security policy in firewalls. First, we have provided a 
formal and high level language for specifying security 
policy in firewalls. In this language, the security policy 
is specified based on Deontic logic and is contained of 
security propositions. Second, we have proposed a
framework for translating the specified security policy to 
propositional logic formulas. This formal framework is 
used for specifying simple and total anomalies in the 
security policy of firewalls. Third, we have developed a 
tool based on BDD for discovering anomalies in a
security policy. This analysis process is based on 
verification of anomaly theorems have been specified in 
our model. A state machine and two algorithms for 
detection process have been presented. Our detection 
technique is useful and practical for firewall
administrators. Furthermore, based on our formal model 
for anomaly specification, we have provided two
algorithms  for  removing simple and total anomalies that 
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Fig. 2: Processing time for simple anomaly discovery

lead to decrease the number of rules without changing
the security policy.

Our  experimental  results  indicate  that  in the 
worst case, the anomaly detection process takes 15-2500
ms of processing time to analyze a security policy of 
100-100000 propositions. Moreover, the algorithms
proposed  in  this  paper  are  not   limited  to  the
number  of  anomalies  in  the  security  policy of 
firewalls. The results of our performance evaluation 
show that the processing time of the discovery
algorithm for simple anomalies is very close to the
performance  of discovery  algorithm  for  total
anomalies  in  a  firewall  containing  an  equivalent 
number of security propositions.

Our future research plan includes integrating the 
anomaly detection and resolving techniques to our
research on developing an optimized structural
framework for rule matching in firewalls. In addition we 
are interested in extending our techniques to support 
the security policy in distributed firewalls.
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Fig. 3: Processing time for total anomaly discovery

1.ResolveTotalAnomaly (SP)
2. for each Pj in SP
3. Pj translated to Cj , Aj
4. for each Pi in SP with priority lower than Pj
5. Pi translated to Ci , Ai
6. if BDD_Satisfy (Aj ? Ai ) and BDD_Satisfy (? ( ???? ? ????+1)??- 1

??=1 ) then
7. if BDD_Satisfy (? ( ???? ? ??????

??=1 ) then
8. Remove(Pj  (, Return
9. for each Pi in SP with priority higher than Pj
10. Pi translated to Ci , Ai
11. if not BDD_Satisfy (Aj ? Ai) and BDD_Satisfy (? ( ???? ? ????+ 1)??- 1

??= 1 ) then
12. if BDD_Satisfy (? ( ???? ? ??????

??=1 ) then
13. for each ???? ???? ? ????

??
??= 1

14. if BDD_Satisfy(? ( ?????? ? ?????? )
5
??=1 then

15. Remove(?????? ???? ????) , Return
16. if BDD_Satisfy (Ax ? Ai) and BDD_Satisfy (? ( ???? ? ????+ 1)??- 1

??= 1 ) then
17. if BDD_Satisfy (? ( ???? ? ??????

??=1 ) then
18. Remove(Pj ), Return
19. end ResolveTotalAnomaly

Algorithm 5: Resolving total anomalies
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