
World Applied Sciences Journal 7 (Special Issue of Computer & IT): 152-160, 2009
ISSN 1818.4952
© IDOSI Publications, 2009

Corresponding Author: Dr. Saeed Parsa, Parallel Processing and Concurrent Systems Laboratory, Department of Computer
Engineering, Iran University of Science and Technology (IUST), Tehran, Iran

152

RASA: A New Task Scheduling Algorithm in Grid Environment

Saeed Parsa and Reza Entezari-Maleki

Parallel Processing and Concurrent Systems Laboratory,
Department of Computer Engineering, Iran University of Science and Technology (IUST), Tehran, Iran

Abstract: In this paper, a new task scheduling algorithm called RASA, considering the distribution and
scalability characteristics of grid resources, is proposed. The algorithm is built through a comprehensive
study and analysis of two well known task scheduling algorithms, Min-min and Max-min. RASA uses the
advantages of the both algorithms and covers their disadvantages. To achieve this, RASA firstly estimates
the completion time of the tasks on each of the available grid resources and then applies the Max-min and
Min-min algorithms, alternatively. In this respect, RASA uses the Min-min strategy to execute small tasks
before the large ones and applies the Max-min strategy to avoid delays in the execution of large tasks and
to support concurrency in the execution of large and small tasks. Our experimental results of applying
RASA on scheduling independent tasks within grid environments demonstrate the applicability of RASA in
achieving schedules with comparatively lower makespan.

Key words: Gird computing • task scheduling algorithm • task completion time • max-min • min-min

INTRODUCTION

Grid is a large scale distributed system, concerned
with coordinated resource sharing and problem
solving. The grid infrastructure provides a mechanism
to execute applications over autonomous and
geographically distributed nodes by sharing resources
which may belong to different individuals and
institutions [1]. Computational grid is a kind of grid
environments, targeted at solving computationally
intensive problems. Computational grid is defined as a
hardware and software infrastructure which provides
dependable, consistent, pervasive and inexpensive
access to computational resources existing on the
network [1].

To make effective use of the tremendous
capabilities of the computational grids, efficient task
scheduling algorithms are required. Task scheduling
algorithms are commonly applied by gird resource
manager to optimally dispatch tasks to the grid
resources [2-10]. Typically, grid users submit their own
tasks to the grid manager to take full advantage of the
grid facilities. The grid manager in a computational grid
tries to distribute the submitted tasks amongst the grid
resources in such a way that the total response time is
minimized.

There are relatively a large number of task
scheduling algorithms to minimize the total completion
time of the tasks in distributed systems [3, 9, 11-14].
Actually, these algorithms try to minimize the overall

completion time of the tasks by finding the most
suitable resources to be allocated to the tasks. It should
be noticed that minimizing the overall completion time
of the tasks does not necessarily result in the
minimization of execution time of each individual task.

Two well known examples of such algorithms are
Max-min and Min-min [3, 9, 11, 12, 14]. These two
algorithms estimate the execution and completion times
of each of the tasks on each of the grid resources.
Estimating the execution time of each task on different
resources, the Min-min algorithm selects the task with
minimum completion time and assigns it to the resource
on which the minimum execution time is achieved. The
algorithm applies a same procedure to the remaining
tasks. A major difficulty with the Min-min algorithm is
to assign the smaller tasks to the resources with
relatively higher computational power. As a result, the
makespan of the system is determined by the larger
tasks if the number of the smaller tasks is more than the
longer ones. To resolve the difficulty, the Max-min
algorithm gives priority to the larger tasks. The Max-
min algorithm firstly assigns the large or in other words
time consuming tasks to the resources and then assigns
the small ones. The Max-min seems to do better than
the Min-min algorithm whenever the number of shorter
tasks is much mo re than the longer ones, but in the
other cases, early execution of the large tasks might
increase the total response time of the system. Also, in
the Max-min algorithm, the small tasks may wait for
large ones to be executed.

World Appl. Sci. J., 7 (Special Issue of Computer & IT): 152-160, 2009

153

To resolve the difficulties of the Min-min and
Max-min algorithms, these two algorithms could be
executed alternatively, when assigning a new task to an
appropriate resource. In this case, a large task is
selected immediately after a small one and vice versa.
Thereby, a comparatively better load balancing is
achieved and the total response time of the grid system
is improved.

This paper offers a novel task scheduling algorithm
to resolve the above mentioned problems with the Min-
min and Max-min algorithms. The algorithm, RASA
(Resource Aware Scheduling Algorithm), applies the
Max-min and Min-min strategies alternatively to
assign tasks to the resources. RASA is implemented in
GridSim environment. Practical experiments with
GridSim demonstrate the benefits of applying RASA to
schedule independent tasks within grid environments.

The remaining parts of this paper are organized as
follows: Section 2 presents the related works. In
Section 3, task scheduling in grid environments and
several well known scheduling algorithms which are
benchmarks of many other works, are introduced. In
section 4, the new scheduling algorithm is proposed and
one example is presented to illustrate the prominence of
the new algorithm. Section 5 compares the scheduling
algorithms in an assumed grid environment using
GridSim; consequently, reports the obtained results of
the simulation. Finally, section 6 concludes the paper
and presents future works.

RELATED WORKS

Due to relatively high communication costs in grid
environments most of the well known scheduling
algorithms are not applicable in large scale distributed
systems such as grid environments [3, 7, 8]. There has
been an ongoing attempt to build scheduling algorithms
specifically within grid environments.

X. He et al. have presented a new algorithm based
on the conventional Min-min algorithm [3]. The
proposed algorithm which is called QoS guided Min-
min, schedules tasks requiring high bandwidth before
the others. Therefore, if the bandwidth required by
different tasks varies highly, the QoS guided Min-min
algorithm provides better results than the Min-min
algorithm. Whenever the bandwidth requirement of all
of the tasks is almost the same, the QoS guided Min-
min algorithm acts similar to the Min-min algorithm.

F. Dong et al. have proposed a similar algorithm
called QoS priority grouping scheduling [12]. This
algorithm, considers deadline and acceptation rate of
the tasks and the makespan of the wholes system as
major factors for task scheduling. In comparison with
Min-min and QoS guided Min-min, the QoS priority

grouping scheduling algorithm achieves better
acceptance rate and completion time for the
submitted tasks.

E. Ullah Munir et al. have presented a new task
scheduling algorithm for grid environments called QoS
Sufferage [13]. This algorithm considers network
bandwidth and schedules tasks based on their
bandwidth requirement as the QoS guided Min-min
algorithm does. Compared with the Max-min, Min-min,
QoS guided Min-min and QoS priority grouping
algorithms, QoS Sufferage obtains smaller makespans.

K. Etminani et al. have proposed a new algorithm
which uses Max-min and Min-min algorithms [14]. The
algorithm determines to select one of these two
algorithms, dependent on the standard deviation of
the expected completion times of the tasks on each
of the resources.

L. Mohammad Khanli et al. have presented QoS
based scheduling solutions in a specific architecture
called Grid-JQA [4, 5]. This scheduling solution applies
an aggregation formula that is a combination of
parameters together with weighting factors to evaluate
QoS. Despite outperforming the Max-min, Min-min
and Sufferage, the Khanli's scheduling algorithm is not
practical and seems to be an unpractical mathematical
solution [5].

A. Afzal et al. have proposed a new grid
scheduling algorithm that minimizes the cost of the
execution of workflows while ensuring that their
associated QoS constraints are satisfied [15]. The
algorithm views a grid environment as a queuing
system and schedules tasks within this system. This
algorithm is system oriented and considers the
execution cost. Hence, it is suitable for economic grids.
Since the algorithm is non-linear, as the size of the
problem is gets large the time it takes to obtain a
suitable scheduling becomes very long and
unacceptable.

E. Elmroth et al. have proposed a user oriented
algorithm for task scheduling in grid environments,
using advanced reservation and resource selection [6].
The algorithm minimizes the total execution time of the
individual tasks without considering the total execution
time of all of the submitted tasks. Therefore, the overall
makespan of the system does not necessarily get small.

B.T. Benjamin Khoo et al. have presented a new
scheduling algorithm for workload distribution in
grid environments [7]. This algorithm which is known
as multiple resources scheduling (MRS) algorithm,
takes into account both the site capabilities and the
resource requirements of tasks. To quantify the
performance of the algorithm, the average task wait
times, queue completion times and average resource
utilization factor, of the algorithm are compared to the

World Appl. Sci. J., 7 (Special Issue of Computer & IT): 152-160, 2009

154

conventional backfill and replication algorithms. The
comparison results indicate that this algorithm is more
applicable than the other two algorithms.

B. Yagoubi et al. have offered a model to
demonstrate grid architecture and an algorithm to
schedule tasks within grid resources [8]. The algorithm
tries to distribute the workload of the grid environment
amongst the grid resources, fairly. Although, the
mechanism used in [8] and other similar strategies
which try to create load balancing within grid resources
can improve the throughput of the whole grid
environment, the total makespan of the system does not
decrease, necessarily.

TASK SCHEDULING ALGORITHMS

Suppose that m resources Rj(j = 1,...,m) have to
process n tasks Ti(i = 1,..., n). A schedule for each task
is an allocation of one or more time intervals to one or
more resources [16]. The expected execution time Eij of
task Ti on resource Rj is defined as the amount of time
taken by Rj to execute Ti given Rj has no load when Ti is
assigned. The expected completion time Cij of task Ti
on resource Rj is defined as the wall-clock time at
which Rj completes Ti (after having finished any
previously assigned tasks). Let bi denote to the
beginning of the execution of task Ti. From the above
definitions, Cij=bi+Eij. Let Ci be the completion time
for task Ti and it is equal to Cij where resource Rj is
assigned to execute task Ti. The makespan for the
complete schedule is then defined as

iT K iMax (C)∈ .
Makespan is a measure of the throughput of the
heterogeneous computing system (like computational
grid) [9, 11].

Decision about the assigning of tasks to the
resources and Finding the best match between tasks and
resources is NP-complete problem [3, 10, 11, 16]. Lots
of scheduling algorithms are proposed to assign the
tasks to the resources by considering one or several
QoS parameters. These algorithms show different
performances based on the environment in which they
are used. The traditional parallel scheduling problem is
to schedule the subtasks of an application on the
parallel machines in order to reduce the turnaround
time. In a grid environment, the scheduling problem is
to schedule a set of tasks from different users on a set of
computing resources to minimize the completion time
of a specific task or the makespan of a system. Also,
other parameters such as load balancing, system
throughput, service reliability, service cost, system
utilization and so forth can be considered.

Generally, the scheduling algorithms are divided
into two basic categories; immediate mode scheduling
and batch mode scheduling. In the immediate mode, a

task is mapped onto a resource as soon as it arrives at
the scheduler. In the batch mode, tasks are not mapped
onto the resources as they arrive; instead they are
collected into a set that is examined for mapping at
prescheduled times called mapping events. The
independent set of tasks which is considered for
mapping at the mapping events is called a meta-task
[14]. Some algorithms estimate the execution time of
the tasks existing in the meta-task on the resources;
then assign each task to the resource with the minimum
expected execution time for that task. The algorithms
with this mechanism are named as minimum execution
time (MET) algorithms [3, 9, 11, 14]. The minimum
completion time (MCT) algorithms assign each task to
the resource which results in that task's earliest
completion time. This causes some tasks to be assigned
to the resources that do not have the minimum
execution time for them [3, 9, 11, 14].

One of the earlier scheduling algorithms which do
not use the execution or completion time of the tasks
and schedules the tasks in the arbitrary order is
opportunistic load balancing (OLB) algorithm. The
insight behind OLB is to keep all resources as busy as
possible. One advantage of OLB is its simplicity, but
because OLB does not consider expected task execution
times, the mappings it finds can result in very poor
makespans [11]. In OLB algorithm, if multiple
resources become ready at the same time, then one
resource is arbitrarily chosen. The complexity of the
OLB is dependent on the implementation. As an
example, in the implementation considered in [9], the
complexity of the algorithm is O(m) , where m is the
number of all of the resources.

In contrast with OLB, Min-min and Max-min
algorithms schedule tasks by considering the execution
time of the tasks on the resources. The Min-min
algorithm begins with the set U of all unscheduled
tasks. Then, the set of minimum completion times for
each of the tasks exiting in U is found. Next, the task
with the overall minimum completion time from
unscheduled tasks is selected and assigned to the
corresponding resource (hence the name Min-min).
Last, the newly scheduled task is removed from U and
the process repeats until all tasks are scheduled [11].
The Min-min algorithm is shown in Fig. 1.

In Fig. 1, rj denotes the expected time which
resource Rj will become ready to execute a task after
finishing the execution of all tasks assigned to it. First,
the Cij entries are computed using the Eij (the estimated
execution time of task Ti on resource Rj) and rj values.
For each task Ti, the resource that gives the earliest
expected completion time is determined by scanning
the ith row of the C matrix (composed of the Cij
values). The task Tk that has the minimum earliest

World Appl. Sci. J., 7 (Special Issue of Computer & IT): 152-160, 2009

155

1. for all tasks Ti in meta-task Mv

2. for all resources Rj

3. Cij=Eij+rj

4. do until all tasks in Mv are mapped

5. for each task in Mv find the earliest

completion time and the resource that obtines it

6. find the task Tk with the minimum earliest

completion time

7. assigne task Tk to the resource Rl that gives the

earliest completion time

8. delete task Tk from Mv

9. update rl

10. update Cil for all i

11.end do

Fig. 1: The Min-min algorithm

expected completion time is determined and then
assigned to the corresponding resource. The matrix C
and vector r are updated and the above process is
repeated for tasks that have not yet been assigned to a
resource.

The Max-min algorithm is similar to the Min-min
algorithm. It differs from the Min-min algorithm in that
once the resource that provides the earliest completion
time is found for every task, the task Tk that has the
maximum earliest completion time is determined and
then assigned to the corresponding resource. That is, in
line (6) of Fig. 1, “minimum” would be changed to
“maximum” [9].

Both the Min-min and Max-min algorithms
consider a hypothetical assignment of tasks to
resources, projecting when a resource will become idle
based on the hypothetical assignment. Both algorithms
have time complexities of O(mn2), where m is the
number of resources in the system and n is the number
of tasks which should be scheduled to be executed [10].

THE NEW SCHEDULING ALGORITHM

Let Ti be the first task mapped by Min-min onto the
resource, Rj. According to the Min-min algorithm, Rj
should execute Ti in the shortest possible time,
compared with the other resources. The remaining tasks
are assigned to the fastest resource, Rj, as long as the
total execution times of the task assigned to the Rj is
less than the time it takes to execute the tasks on
the other resources. This approach results in a
comparatively shorter makespan if the execution time
of the tasks varies slightly because it attempts to assign
the tasks to the fastest resources. However, if there are
large and small tasks, the large ones may be assigned to
slower resources and the makespan of the system will
be increased, dramatically.

The Max-min algorithm seems to do better than the
Min-min algorithm in the cases when the number of
short tasks is much more than the long ones. For
example, if there is only one long task, the Max-min
algorithm executes many short tasks concurrently with
the long task. In this case, the makespan of the system
is most likely determined by the execution time of the
long task. However, since the Min-min algorithm
attempts to assign the short tasks before the long one,
the makespan increases compared with the Max-min.
On the other hand, mapping the longest task to the
fastest resource provides a better opportunity for
concurrent execution of the small tasks on different
resources. In this certain situation, the Max-min
provides a better mapping which supports load
balancing across the grid resources more than the Min-
min [11]. Although load balancing in small scale
distributed systems is desirable and leads to reduced
total completion times however, in large scale
distributed systems load balancing does not necessarily
results in the shortest makespan. The proposed
algorithm outperforms Max-min in large scale systems,
because it focuses on minimizing the completion time
of tasks rather than load balancing.

In subsection 4.1, the new algorithm is proposed
and in subsection 4.2, an illustrative example is
presented to compare the proposed algorithm with
existing algorithms.

RASA: Our proposed grid scheduling algorithm,
RASA, is presented in Fig. 2. The algorithm builds a
matrix C where Cij represents the completion time of
the task Ti on the resource Rj. If the number of available
resources is odd, the Min-min strategy is applied to
assign the first task, otherwise the Max-min strategy is
applied. The remaining tasks are assigned to their
appropriate resources by one of the two strategies,
alternatively. For instance, if the first task is assigned to
a resource by the Min-min strategy, the next task will
be assigned by the Max-min strategy. In the next round
the task assignment begins with a strategy different
from the last round. For instance if the first round
begins with the Max-min strategy, the second round
will begin with the Min-min strategy.

Experimental results show that if the number of
available resources is odd it is preferred to apply the
Min-min strategy the first in the first round otherwise is
better to apply the max-min strategy the first.
Alternative exchange of the Min-min and Max-min
strategies results in consecutive execution of a small
and a large task on different resources and hereby, the
waiting time of the small tasks in Max-min algorithm
and the waiting time of the large tasks in Min-min
algorithm are ignored. As RASA is consist of the

World Appl. Sci. J., 7 (Special Issue of Computer & IT): 152-160, 2009

156

1. for all tasks Ti in meta-task Mv

2. for all resources Rj

3. Cij=Ej+rj

4. do until all tasks in Mv are mapped
5. if the number of resources is even then
6. for each task in Mv find the earliest completion

time and the resource that obtines it
7. find the task Tk with the maximum earliest

completion time
8. assigne task Tk to the resource Rl that gives the

earliest completion time
9. delete task Tk from Mv

10. update rl

11. update Cil for all i
12. else
13. for each task in Mv find the earliest completion

time and the resource that obtines it
14. find the task Tk with the minimum earliest

completion time
15. assigne task Tk to the resource Rl that gives the

earliest completion time
16. delete task Tk from Mv

17. update rl

18. update Cil for all i
19. end if
20.end do

Fig. 2: The proposed algorithm (RASA)

Max-Min and Min-Min algorithms and have no time
consuming instruction, the time complexity of RASA is
O(mn2) where m is the number of resources and n is the
number of tasks (similar to Max-min and Min-min
algorithms).

An illustrative example: As a simple example, assume
there is a grid environment with two resources. The
processing speed of the resources and the bandwidth of
the communication links which connect each of the
resources to the grid manager are shown in Table 1.
Four tasks T1, T2, T3 and T4 are in the meta-task Mv and
the grid manager is supposed to schedule all the tasks
within Mv on two resources R1 and R2. Table 2
represents the volume of instructions and data in the
tasks T1 to T4.

Applying the data presented in Table 1 and 2, it is
possible to calculate the expected completion time
of the tasks on each of the resources. The calculated
completion time of the tasks are demonstrated in
Table 3.

Figure 3 includes two Gantt charts representing the
results of applying Max-min and Min-min algorithms
on the meta-task Mv, described in Table 1 and 2.
Although the orders of the tasks scheduled in Max-min
and Min-min algorithms are different, the makespan of
the system is equal when applying each of the
algorithms.

Table 1: Specification of the resources

Processing Related
Resources speed (MIPS) bandwidth (Mbps)

R1 50 100
R2 100 5

Table 2: Specification of the tasks

Volume of Volume of
Tasks instructions (MI) data (Mb)

T1 128 44
T2 69 62
T3 218 64
T4 21 59

Table 3: Completion time of the tasks on each of the resources

Tasks/Resources R1 R2

T 1 3 10
T 2 2 13
T 3 5 15
T 4 1 12

Fig. 3: Gantt chart of the Max-min and Min-min
algorithms

The result of applying RASA on meta-task Mv is
exposed in Fig. 4. As shown in Fig. 4, the makespan of
the system when applying RASA is 10 second, whilst
Max-min and Min-min provide a scheduling with a
makespan of 11 seconds.

Also, considering the completion times in Fig. 3
and 4 it is observed that RASA outperforms Max-min
and Min-min algorithms by providing relatively smaller
makespan and higher load balancing. It is assumed that
tasks can be executed on any of the resources,
independently. Therefore, the QoS guided Min-min and
QoS priority grouping algorithms act the same as
Min-min algorithm. The above example is only one

Max-min
R1 R2

T4

T1

T3

T2

Min-min
R1 R2

T4

T2

T1

T3

11

10

11

Completion
 time (sec)

Completion
 time (sec)

World Appl. Sci. J., 7 (Special Issue of Computer & IT): 152-160, 2009

157

Fig. 4: Gantt chart of RASA

case which shows the privilege of RASA compared to
the other algorithms. However, one can provide an
example in which the results of RASA are equal or
even worse than the other above mentioned algorithms.
In general when the submitted tasks have almost the
same size, the Min-min or Max-min algorithms may act
better than RASA.

SIMULATION AND EXPERIMENTAL RESULTS

To evaluate and compare RASA with other
algorithms such as Max-min, Min-min, OLB, QoS
guided Min-min and QoS priority grouping, a
simulation environment known as GridSim toolkit [17]
has been used. In order to demonstrate the preeminence
of RASA in comparison with other algorithms, two
different assumptions are made:

Assumptions I: The computation time of the tasks
overcomes to the communication time of them. This
situation occurs in multiprocessors and small scale
distributed systems (such as cluster environments).

Assumptions II: The communication time becomes
more and even can be overcomes to the computation
time of the tasks. This situation occurs in large scale
distributed systems such as grid environments in which
the resources are widely distributed and connected via
the communication links.

The above mentioned algorithms have been
simulated in GridSim environment. It has been assumed
that there are no constraints for executing tasks on
different resources and each of the tasks could be
executed on each of the resources. In this situation, the
QoS guided Min-min and QoS priority grouping
algorithms performed the same as the Min-min
algorithm. Therefore, in all the plots presented in the
following figures, only the results of Min-min are
depicted and the plots related to QoS guided Min-min

17
17.5

18
18.5

19
19.5

20
20.5

21
21.5

22
22.5

23

10 11

Max-min Min-min OLB RASA

(a)

85
87
89
91
93
95
97
99

101
103
105
107

10 11
(b)

635
640
645
650
655
660
665
670
675
680
685
690
695
700
705
710
715
720
725

10 11
(c)

Fig. 5: Makespans of the algorithms in scenario I

and QoS priority grouping algorithms are eliminated. In
order to study the effect of the volume of workload on
the efficacy of RASA and to compare it with the other
algorithms, in each of the above mentioned
assumptions, three different workloads of light, medium
and heavy load are considered. In light load, 200 tasks
are dispatched within 10 to 11 grid resources and

R1 R2

T4

T1

T3

T2

10

Completion
 time (sec)

World Appl. Sci. J., 7 (Special Issue of Computer & IT): 152-160, 2009

158

38
39.5

41
42.5

44
45.5

47
48.5

50
51.5

10 11

Max-min Min-min OLB RASA

(a)

190
195
200
205
210
215
220
225
230
235
240

10 11
(b)

970
982
994

1006
1018
1030
1042
1054
1066
1078
1090
1102
1114
1126
1138
1150
1162
1174
1186

10 11
(c)

Fig. 6: Makespans of the algorithms in assumption II

makespan is estimated for each of the algorithms. Also,
in medium load, 1000 tasks and in heavy load, 5000
tasks have been considered. Figure 5 and 6 show the
makespans achieved by applying the algorithms,
considering Assumption I and Assumption II,
respectively.

As shown in Fig. 5a, when the computation time of
the tasks exceeds their communication time and the
workloads of the resources are light, Max-min returns
relatively smaller makespan than the other algorithms.

85

87.5

90

92.5

95

97.5

100

Light 1

Heavy 2

Heavy 1

Medium 2

Medium 1

Light 2

Max-min Min-min
OLB RASA

Fig. 7: Makespans of the algorithms when the number
of resources is 10

As the workload of the resources increases, the
makespans achieved by the Min-min and RASA get
smaller. As shown in Fig. 5b and 5c, the makespan
returned by RASA is less than the makespans returned
by the other algorithms. Considering Fig. 5b and 5c, it
can be concluded that; RASA returns smaller
makespans compared with Max-min, Min-min, OLB,
QoS guided Min-min and QoS priority grouping
algorithms, in small scale distributed systems.

Figure 6 shows the makespans of the algorithms
based on Assumption II. As shown in Fig. 6a, when the
workload is light, the makespan returned by RASA is
less than the other algorithms. Comparing Fig. 5a and
6a, it is observed that; Max-min is suitable for small
scale distributed systems whilst Min-min well suits
large scale distributed systems. However, RASA
returns relatively smaller makespans than both the Min-
min and Max-min algorithms in both small scale and
large scale distributed systems. When the workload of
the resources is heavy, RASA achieves smaller
makespans in comparison with the other algorithms.
Therefore, RASA achieves smaller makespans both in
light and heavy load conditions.

For the sake of clarity, in Fig. 5 and 6 the
makespans returned by different algorithms are
rescaled. Here, the largest makespan, returned by OLB,
is 100 and the other makespans are rescaled with
respect to this amount. The six different cases observed
in Fig. 5 and 6 are considered as vertices of a regular
hexagon. The vertices of the hexagon are named as
Light 1, Light 2, Medium 1, Medium 2, Heavy 1 and
Heavy 2 which imply light load in Assumption I, light
load in Assumption II, medium load in Assumption I,
medium load in Assumption II, heavy load in
Assumption I and heavy load in Assumption II,

World Appl. Sci. J., 7 (Special Issue of Computer & IT): 152-160, 2009

159

85

87.5

90

92.5

95

97.5

100

Light 1

Heavy 2

Heavy 1

Medium 2

Medium 1

Light 2

Max-min Min-min
OLB RASA

Fig. 8: Makespans of the algorithms when the number
of resources is 11

respectively. The hexagon is shown in Fig. 7. In this
hexagon the number of grid resources is assumed to be
10. The number of grid resources, in Fig. 8, is 11. As
shown in Fig. 7 and 8 the area of the non-regular
hexagon which is related to RASA, is smaller than the
other algorithms. Therefore, it can be concluded that;
the makespans returned by RASA are smaller than the
other algorithms in almost all different conditions.

CONCLUSION AND FUTURE WORKS

Min-min and Max-min algorithms are applicable in
small scale distributed systems. When the number of
the small tasks is more than the number of the large
tasks in a meta-task, the Min-min algorithm can not
schedule tasks, appropriately and the makespan of the
system gets relatively large. Unlike the Min-min
algorithm, the Max-min algorithm attempts to achieve
load balancing within resources by scheduling the large
tasks prior to the small ones. However, within a
computational grid environment high throughput is of
great interest rather than the load balancing. To achieve
this, in this article, a new task scheduling algorithm,
RASA, is proposed.

RASA is composed of two traditional scheduling
algorithms; Max-min and Min-min. RASA uses the
advantages of Max-min and Min-min algorithms and
covers their disadvantages. The experimental results
obtained by applying RASA within the GridSim
simulator, shows that RASA is outperforms the existing
scheduling algorithms in large scale distributed
systems.

This study is only concerned with the number of
the resources to be odd or even and analyses the merits

and drawbacks of two well known traditional
algorithms, Max-min and Min-min. In this paper, the
deadline of each task, arriving rate of the tasks,
cost of the task execution on each of the resource, cost
of the communication and many other cases that
can be a topic of research are not considered. Also,
applying the proposed algorithm on actual grid
environment for practical evaluation can be other open
problem in this area.

ACKNOWLEDGMENT

The authors want to express their gratitude to the
Iranian National Elite Foundation for their financial
support of this paper. Also, the authors would like to
express their cordial thanks to Miss Pegah Moradi-
Hamed and Miss Marzie Mehdi-Beyraghdar for their
valuable assist.

REFERENCES

1. Foster, I. and C. Kesselman, 2004. The Grid 2:
Blueprint for a New Computing Infrastructure.
Second Edition. Elsevier and Morgan Kaufmann
Press.

2. Chunlin, L. and L. Layuan, 2006. QoS based
resource scheduling by computational economy in
computational grid. Journal of Information
Processing Letters, 98: 119-126.

3. He, X., X-He Sun and G.V. Laszewski, 2003. QoS
Guided Min-min Heuristic for Grid Task
Scheduling. Journal of Computer Science and
Technology, 18: 442-451.

4. Mohammad Khanli, L. and M. Analoui, 2008.
Resource Scheduling in Desktop Grid by Grid-
JQA. The 3rd International Conference on Grid
and Pervasive Computing, IEEE.

5. Mohammad Khanli, L. and M. Analoui, 2007.
Grid_JQA: A QoS Guided Scheduling Algorithm
for Grid Computing. The Sixth International
Symposium on Parallel and Distributed Computing
(ISPDC’07), IEEE.

6. Elmroth, E. and J. Tordsson, 2008. Grid resource
brokering algorithms enabling advance
reservations and resource selection based on
performance predictions. Journal of Future
Generation Computer Systems, 24: 585-593.

7. Benjamin Khoo, B.T. B. Veeravalli, T. Hung and
C.W. Simon See, 2007. A multi-dimensional
scheduling scheme in a Grid computing
environment. Journal of Parallel and Distributed
Computing, 67: 659-673.

8. Yagoubi, B. and Y. Slimani, 2007. Task Load
Balancing Strategy for Grid Computing. Journal of
Computer Science, 3 (3): 186-194.

World Appl. Sci. J., 7 (Special Issue of Computer & IT): 152-160, 2009

160

9. Maheswaran, M., Sh. Ali, H. Jay Siegel, D.
Hensgen and R.F. Freund, 1999. Dynamic
Mapping of a Class of Independent Tasks onto
Heterogeneous Computing Systems. Journal of
Parallel and Distributed Computing, 59: 107-131.

10. Freund, R.F., M. Gherrity, S. Ambrosius, M.
Campbell, M. Halderman, D. Hensgen, E. Keith, T.
Kidd, M. Kussow, J.D. Lima, F. Mirabile, L.
Moore, B. Rust and H.J. Siegel, 1998. Scheduling
Resource in Multi-User, Heterogeneous,
Computing Environment with SmartNet. In the
Proceeding of the Seventh Heterogeneous
Computing Workshop.

11. Braun, T.D., H. Jay Siegel, N. Beck, L.L. Boloni,
M. Maheswaran, A.I. Reuther, J.P. Robertson,
M.D. Theys and B. Yao, 2001. A Comparison of
Eleven Static Heuristics for Mapping a Class of
Independent Tasks onto Heterogeneous Distributed
Computing Systems. Journal of Parallel and
Distributed Computing, 61: 810-837.

12. Dong, F., J. Luo, L. Gao and L. Ge, 2006. A Grid
Task Scheduling Algorithm Based on QoS Priority
Grouping. In the Proceedings of the Fifth
International Conference on Grid and Cooperative
Computing (GCC’06), IEEE.

13. Ullah Munir, E., J. Li and Sh Shi, 2007. QoS
Sufferage Heuristic for Independent Task
Scheduling in Grid. Information Technology
Journal, 6 (8): 1166-1170.

14. Etminani, K. and M. Naghibzadeh, 2007. A Min-
min Max-min Selective Algorithm for Grid Task
Scheduling. The Third IEEE/IFIP International
Conference on Internet. Uzbekistan.

15. Afzal, A., A. Stephen McGough and J. Darlington,
2008. Capacity planning and scheduling in Grid
computing environment. Journal of Future
Generation Computer Systems, 24: 404-414.

16. Brucker, P., 2007. Scheduling Algorithms. Fifth
Edition. Springer Press.

17. Buyya, R. and M. Murshed, 2002. GridSim: A
toolkit for the odeling and simulation of
distributed resource management and scheduling
for grid computing . Journal of Concurrency
and Computation Practice and Experience,
pp: 1175-1220.

