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Abstract: This paper presents two analytical models for TCP Reno and TCP Tahoe. For each model an 
algorithm is derived to calculate the utilizations and packet drop rates. The accuracy of the models is 
verified by comparing the calculated results versus simulation results. These results show that the TCP 
Reno is  superior to Tahoe by having higher percentage of utilization and lower percentage of packet 
dropping rate.
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INTRODUCTION

TCP is known to be the most useful transport layer 
protocol all around the globe [1, 2]. It provides a safe 
and connection oriented service on the network.
Varieties of applications on the internet depend on the 
TCP efficiency and therefore, the analysis of the TCP 
efficiency is important for conjecture of this usage.
Network congestion is one of the factors that reduces 
the TCP efficiency particularly, when variety of traffics 
are on the network. Certain input parameters, such as: 
the number of users, different network applications,
network capacity and etc. are used to control the
congestion. As the network bandwidth increases [3] and 
various network applications are created, more attention 
is paid on the congestion control mechanisms by
focusing on the flow control management on the TCP. 
The main objective of this paper is to analyze the 
existing congestion control algorithms by Markov
model and compare their utilization and throughput.
Initially, the existing TCP congestion control
algorithms are explained. After this, two generation of 
TCP protocols; Tahoe and Reno [4] which employ 
these algorithms are explained. Finally, these two
protocols are explained with Markov model and an 
algorithm is obtained for each protocol to calculate their 
utilization. The calculation results are verified by
simulation and these two TCP protocols are assessed 
based on these results.

CONGESTION CONTROL ALGORITHMS

Tahoe utilizes Slow-Start and congestion
avoidance algorithms while Reno employs these two as 
well as fast recovery and fast retransmit. Therefore, it is 

necessary to explain these congestion control
algorithms and their functionality.

Slow-start: In this algorithm for every new connection 
a congestion window (CWND) is initialized in the
sender side with a default value. If the receiver,
receives a packet with a sequence number (n), it sends 
an ACK packet (acknowledge) to verify its reception as 
well as the sequence number of the next packet (n+1) 
that sender would send. The sender increments the 
CWND after each ACK packet [1, 5]. In fact, the
CWND represents the number of packets that a sender 
can sequentially send without waiting for their
verification. This mechanism tends to an exponential 
increase in the CWND in the course of time as
graphically  shown  in  Fig.  1.  However, there is a 
limit for the increase because the CWND is reduced
after  each  unsuccessful transmission (a packet loss). A

Fig. 1: Increase size of CWND [4]
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Fig. 2: Fast retransmit algorithm

packet loss is assumed in the TCP by either a time out
or duplicate ACK response for the same packet (a
dupack).

Congestion avoidance: This algorithm is used for
solving the problem of the lost packets when the rate of 
incoming packets to a router exceeds from its routing 
speed [4]. 

Although Congestion Avoidance [6] and Slow-
Start are different control algorithm [3] but their
performance depends on each other. The control
mechanism  that  made  by  mixing  these  two 
algorithms use CWND and Slow-Start threshold Size 
(SSTHRESH) to specify the number of sent packets. 
The number of sent packets can be obtained from
Equation (1) 

               Min (Receive Window, CWND) (1)

where, the receive window is the size of the buffer in 
the receiver. After connection, the TCP sets CWND to 
one and the slow-start algorithm will start. When
congestion occurs, half of the current window is stored 
in the SSTHRESH and CWND will be set to one again. 
TCP continues slow-start algorithm as long as the size 
of CWND is smaller than SSTHRESH. After CWND 
exceeds than SSTHRESH the TCP starts the congestion 
avoidance algorithm, in which CWND increases
linearly according to the Equation (2). 

2
new

old

segmentsize
CWND

CWND
= (2)

In Equation (2) the segment size equals to the
number  of packets.  Figure  2  shows  the  operation  of 

Fig. 3: Fast retransmit algorithm in packet loss

combined slow-start and congestion avoidance
algorithms.

Fast retransmit algorithm: Old TCPs would
recognize the lost packets and the network congestion 
by a timeout mechanism. After sending a packet, the 
receiver waits for a period of time (RTO). During this 
period, if the receiver receives the packet correctly,
sends an ACK response back but if a packet is received 
out of sequence, the receiver sends two consecutive 
ACKs (a dupack). A dupack can also be received as a 
result of a lost packet. In the former more than one 
dupack (based on the sequence number) might be sent. 
Receiving more than two dupack indicates a packet 
loss, as we can see in Fig. 3. Upon receiving a dupack, 
the TCP retransmits the lost packet without waiting for 
the end of RTO.
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Fig. 4: Fast recovery algorithm

Fast recovery algorithm: In this algorithm, when the 
sender receives more than two dupacks, assumes a
packet loss, calculates the value of SSTHRESH and 
CWND sequentially from Equations (3) and (4) and 
sends the packet again.

SSTHRESH = Min (CWNDold, Receiver's 
advertised window)/2(at least 2 MSS) (3)

CWNDnew = SSTHRESH + number of dupacks (4)

Upon receiving the ACK for this packet, the sender 
returns the SSTHRESH to the original CWND value. 
This algorithm acts similar to the slow-start algorithm 
on facing the timeout problem [7]. Figure 4 shows the 
window size growth when a combination fast recovery 
and the fast retransmit is used.

TCP Tahoe: Tahoe is one of the of TCP variations that 
is suggested by Jackson [8]. This algorithm starts with 
slow-start before CWND exceeds SSTHRESH. This
congestion avoidance causes the CWND to increase 
linearly. In case of a timeout, the CWND is initialized 
to one, the SSTHRESH with CWND/2 and the
algorithm backs to the Slow-Start. In receiving three 
dupacks the fast retransmit algorithm is invoked, sends 
the packet before the end of RTO and immediately 
returns to the condition that happens after a timeout. 

TCP Reno: This TCP variation is essentially same as 
the Tahoe except using the fast recovery algorithm [9] 
when three dupacks is received.

Analytical models: In this section the efficiency of the 
mentioned TCP variations are measured with their
Markov  models.  The  model  represents the upstream 
of  a  mobile  which  uploads  data  to  a server through 
an  access  point  and  receives ACKs in the presence of 

Fig. 5: Markov chain for TCP Tahoe

downstream  packets  from  the  same  server and the 
same node. Therefore the receiving ACKs and the
downstream packets use the same buffers. Each state of 
the Markov model shows the size of the transmit
window (CWND) and it is increased exponentially.
Therefore, Pi represents the state in which TCP window 
size is 2i.

Analyzing TCP Tahoe: Figure 5 shows our derived 
Markov model for the TCP Tahoe. In the state “i”
either all packets are successfully sent or a timeout 
happen. In the former, the windows size (CWND) is 
incremented to 2i and the system goes to the next state 
while in the latter the size of window returns to one 
(entering state0). In here, we assume λ = 2i is the packet 
arrival rate, the Ui is the service rate, the Ri is a rate that 
is defined by the inverse of the time that receiver is 
waiting for the ACK (RTO), which can be obtained 
from (5). 

i i
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= (5)

Now by using of marcovian model we create a 
formal with n+1 passive that it gain from (6) 
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where RTT is the round a trip time, which for the 
simplest case is assumed to be one time unit. An 
iterative algorithm is derived based on this model to 
calculate the efficiency of this TCP variation. The
algorithm shown in (7) and (8) tries to solve a system of 
n+1 equations with n variables by assuming k = 2n:
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(7)

The solution in (7) starts with an unknown Pn+1 and 
after each iteration all Pk are found as a linear multiple 
of this unknown. Equation (8) can give Pn+1 and the rest 
of the unknowns (Pk) can be obtained respectively.
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Analyzing TCP Reno: The derived Markov chain for 
the TCP Reno is shown in Fig. 6. There are three
different possibilities:

• All packets are verified and the value of windows 
size becomes 2i and the next state is chosen.

• Three dupacks is received, CWND is halved (equal 
to 2i-1) the system goes back to the previous state.

• A timeout occur, CWND is set to 1 which returns 
the system to state0 and Slow-Start algorithm starts. 
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 Now by using of marcovian model we create a
formal with n+1 passive that it gain from (9) 

An algorithm can be derived based on this model to 
calculate the efficiency of the Reno. Similarly, an
iterative algorithm is derived based on this model to 
calculate the efficiency of this TCP variation. The
algorithm shown in (9) uses (8) to solve a system of 
n+1 equations with n variables by assuming k = 2n.

Fig. 6: Marcovian chain TCP Reno
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Fig. 7: TCP tahoe and reno utilization
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The utilization and drop rate that are calculated 
with these algorithms are shown in Fig. 7 and 8.

Simulation study: In order to verify our analytical
model, the utilization of the TCP Tahoe and Reno are 
obtained by computer simulation. A scenario is
simulated using ns2 with a network of two subnets 
(receiver and sender) that communicate through a
server with a base station. The base station buffer size 
is assumed to be 100 packets. The simulation runs 5 
times, each lasting 100 seconds. Figure 7, shows both 
simulated and calculated utilizations from these two 
algorithms versus window size. As can be seen, the 
simulation results closely follow the calculation results 
as expected. The drop rate versus window size is also 
found for these two algorithms and the results are
shown  in  Fig.  8.  As  we see, in the same window size
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Fig. 8: TCP tahoe and reno drop rate

Reno has better utilization and lower drop rate than of 
the Tahoe because of using fast recovery algorithm. 
This means that Reno is more efficient than Tahoe for 
the same window size. This due to the fact that Reno in 
facing timeout or packet loss only halves its window
size while for the same problems, Tahoe initializes its 
window to one which takes a longer time to recover.

CONCLUSION

In this paper TCP Reno and Tahoe are explained 
based on their Markov models. These models are used 
to derive two iterative algorithms to calculate utilization 
and drop rate. The calculation results are verified by 
simulation results. It is shown that TCP Reno
outperforms TCP Tahoe because of using fast recovery 
algorithm.
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