
World Applied Sciences Journal 7 (Special Issue of Computer & IT): 75-79, 2009
ISSN 1818-4952
© IDOSI Publications, 2009

Corresponding Author: Dr. Mohammad Mehdi Hassani, Islamic Azad University Ayatollah Amoli Banch, Iran
75

A Method for Calculating the TCP Utilization for TCP Reno
and Tahoe using Markovian Model in WLAN

Mohammad Mehdi Hassani and Sanaz Pashmforush

Islamic Azad University Ayatollah Amoli Banch, Iran

Abstract: This paper presents two analytical models for TCP Reno and TCP Tahoe. For each model an
algorithm is derived to calculate the utilizations and packet drop rates. The accuracy of the models is
verified by comparing the calculated results versus simulation results. These results show that the TCP
Reno is superior to Tahoe by having higher percentage of utilization and lower percentage of packet
dropping rate.

Key words: TCP • TCP/IP • congestion control • Tahoe • Reno

INTRODUCTION

TCP is known to be the most useful transport layer
protocol all around the globe [1, 2]. It provides a safe
and connection oriented service on the network.
Varieties of applications on the internet depend on the
TCP efficiency and therefore, the analysis of the TCP
efficiency is important for conjecture of this usage.
Network congestion is one of the factors that reduces
the TCP efficiency particularly, when variety of traffics
are on the network. Certain input parameters, such as:
the number of users, different network applications,
network capacity and etc. are used to control the
congestion. As the network bandwidth increases [3] and
various network applications are created, more attention
is paid on the congestion control mechanisms by
focusing on the flow control management on the TCP.
The main objective of this paper is to analyze the
existing congestion control algorithms by Markov
model and compare their utilization and throughput.
Initially, the existing TCP congestion control
algorithms are explained. After this, two generation of
TCP protocols; Tahoe and Reno [4] which employ
these algorithms are explained. Finally, these two
protocols are explained with Markov model and an
algorithm is obtained for each protocol to calculate their
utilization. The calculation results are verified by
simulation and these two TCP protocols are assessed
based on these results.

CONGESTION CONTROL ALGORITHMS

Tahoe utilizes Slow-Start and congestion
avoidance algorithms while Reno employs these two as
well as fast recovery and fast retransmit. Therefore, it is

necessary to explain these congestion control
algorithms and their functionality.

Slow-start: In this algorithm for every new connection
a congestion window (CWND) is initialized in the
sender side with a default value. If the receiver,
receives a packet with a sequence number (n), it sends
an ACK packet (acknowledge) to verify its reception as
well as the sequence number of the next packet (n+1)
that sender would send. The sender increments the
CWND after each ACK packet [1, 5]. In fact, the
CWND represents the number of packets that a sender
can sequentially send without waiting for their
verification. This mechanism tends to an exponential
increase in the CWND in the course of time as
graphically shown in Fig. 1. However, there is a
limit for the increase because the CWND is reduced
after each unsuccessful transmission (a packet loss). A

Fig. 1: Increase size of CWND [4]

World Appl. Sci. J., 7 (Special Issue of Computer & IT): 75-79, 2009

76

Fig. 2: Fast retransmit algorithm

packet loss is assumed in the TCP by either a time out
or duplicate ACK response for the same packet (a
dupack).

Congestion avoidance: This algorithm is used for
solving the problem of the lost packets when the rate of
incoming packets to a router exceeds from its routing
speed [4].

Although Congestion Avoidance [6] and Slow-
Start are different control algorithm [3] but their
performance depends on each other. The control
mechanism that made by mixing these two
algorithms use CWND and Slow-Start threshold Size
(SSTHRESH) to specify the number of sent packets.
The number of sent packets can be obtained from
Equation (1)

 Min (Receive Window, CWND) (1)

where, the receive window is the size of the buffer in
the receiver. After connection, the TCP sets CWND to
one and the slow-start algorithm will start. When
congestion occurs, half of the current window is stored
in the SSTHRESH and CWND will be set to one again.
TCP continues slow-start algorithm as long as the size
of CWND is smaller than SSTHRESH. After CWND
exceeds than SSTHRESH the TCP starts the congestion
avoidance algorithm, in which CWND increases
linearly according to the Equation (2).

2
new

old

segmentsize
CWND

CWND
= (2)

In Equation (2) the segment size equals to the
number of packets. Figure 2 shows the operation of

Fig. 3: Fast retransmit algorithm in packet loss

combined slow-start and congestion avoidance
algorithms.

Fast retransmit algorithm: Old TCPs would
recognize the lost packets and the network congestion
by a timeout mechanism. After sending a packet, the
receiver waits for a period of time (RTO). During this
period, if the receiver receives the packet correctly,
sends an ACK response back but if a packet is received
out of sequence, the receiver sends two consecutive
ACKs (a dupack). A dupack can also be received as a
result of a lost packet. In the former more than one
dupack (based on the sequence number) might be sent.
Receiving more than two dupack indicates a packet
loss, as we can see in Fig. 3. Upon receiving a dupack,
the TCP retransmits the lost packet without waiting for
the end of RTO.

World Appl. Sci. J., 7 (Special Issue of Computer & IT): 75-79, 2009

77

Fig. 4: Fast recovery algorithm

Fast recovery algorithm: In this algorithm, when the
sender receives more than two dupacks, assumes a
packet loss, calculates the value of SSTHRESH and
CWND sequentially from Equations (3) and (4) and
sends the packet again.

SSTHRESH = Min (CWNDold, Receiver's
advertised window)/2(at least 2 MSS) (3)

CWNDnew = SSTHRESH + number of dupacks (4)

Upon receiving the ACK for this packet, the sender
returns the SSTHRESH to the original CWND value.
This algorithm acts similar to the slow-start algorithm
on facing the timeout problem [7]. Figure 4 shows the
window size growth when a combination fast recovery
and the fast retransmit is used.

TCP Tahoe: Tahoe is one of the of TCP variations that
is suggested by Jackson [8]. This algorithm starts with
slow-start before CWND exceeds SSTHRESH. This
congestion avoidance causes the CWND to increase
linearly. In case of a timeout, the CWND is initialized
to one, the SSTHRESH with CWND/2 and the
algorithm backs to the Slow-Start. In receiving three
dupacks the fast retransmit algorithm is invoked, sends
the packet before the end of RTO and immediately
returns to the condition that happens after a timeout.

TCP Reno: This TCP variation is essentially same as
the Tahoe except using the fast recovery algorithm [9]
when three dupacks is received.

Analytical models: In this section the efficiency of the
mentioned TCP variations are measured with their
Markov models. The model represents the upstream
of a mobile which uploads data to a server through
an access point and receives ACKs in the presence of

Fig. 5: Markov chain for TCP Tahoe

downstream packets from the same server and the
same node. Therefore the receiving ACKs and the
downstream packets use the same buffers. Each state of
the Markov model shows the size of the transmit
window (CWND) and it is increased exponentially.
Therefore, Pi represents the state in which TCP window
size is 2i.

Analyzing TCP Tahoe: Figure 5 shows our derived
Markov model for the TCP Tahoe. In the state “i”
either all packets are successfully sent or a timeout
happen. In the former, the windows size (CWND) is
incremented to 2i and the system goes to the next state
while in the latter the size of window returns to one
(entering state0). In here, we assume λ = 2i is the packet
arrival rate, the Ui is the service rate, the Ri is a rate that
is defined by the inverse of the time that receiver is
waiting for the ACK (RTO), which can be obtained
from (5).

i i

1
R

2RTT
= (5)

Now by using of marcovian model we create a
formal with n+1 passive that it gain from (6)

in outflow flow= (6)

0 0 1 1 1 2 2 2 3

n 1 n 1 n n n n 1 0 0

0 0 1 0 0 1

1 1 2 1 1 2

2 2 3 2 2 3

3 3 4 3 3 4

n n n n 1

0 1 2 3 n n 1

(r)p (r)p (r)p

(r)p (r)p ()p

p (r) p
p (r)p
p (r) p

p (r)p

.

.
p r p

p p p p p p 1

+

− − +

+

+

µ + + µ + + µ +

+ + µ + + µ = λ

λ = λ + µ +
λ = λ +µ +
λ = λ + µ +

λ = λ + µ +

λ =
+ + + + + + =

World Appl. Sci. J., 7 (Special Issue of Computer & IT): 75-79, 2009

78

where RTT is the round a trip time, which for the
simplest case is assumed to be one time unit. An
iterative algorithm is derived based on this model to
calculate the efficiency of this TCP variation. The
algorithm shown in (7) and (8) tries to solve a system of
n+1 equations with n variables by assuming k = 2n:

n 12n

k
2

k 1 kk 1

1
Pn * P

2
for(k n to0){

1 2
l 2

k 1 3*wz
l

p p }
2

+

− −

=

=

α
= + +

−

=

(7)

The solution in (7) starts with an unknown Pn+1 and
after each iteration all Pk are found as a linear multiple
of this unknown. Equation (8) can give Pn+1 and the rest
of the unknowns (Pk) can be obtained respectively.

n 1 k n

k
k 0

1
p

1 p
+ =

=

=
+∑

(8)

Analyzing TCP Reno: The derived Markov chain for
the TCP Reno is shown in Fig. 6. There are three
different possibilities:

• All packets are verified and the value of windows
size becomes 2i and the next state is chosen.

• Three dupacks is received, CWND is halved (equal
to 2i-1) the system goes back to the previous state.

• A timeout occur, CWND is set to 1 which returns
the system to state0 and Slow-Start algorithm starts.

IN OUT

0 0 N N 1 0 0

1 2 0 0 0 0 1 1

2 3 1 1 1 1 2 2

N N N N N 1

FLOW FLOW
R P R P P
R P P (R)P
R P P (R)P
.
.
.

P (R)P

+

+

+

=

+ = λ
+ λ = µ + + λ

+ λ = µ + + λ

λ = µ +

(9)

 Now by using of marcovian model we create a
formal with n+1 passive that it gain from (9)

An algorithm can be derived based on this model to
calculate the efficiency of the Reno. Similarly, an
iterative algorithm is derived based on this model to
calculate the efficiency of this TCP variation. The
algorithm shown in (9) uses (8) to solve a system of
n+1 equations with n variables by assuming k = 2n.

Fig. 6: Marcovian chain TCP Reno

0
20
40
60
80

100
120

window size

computed
renoutilization
simulation reno
utilization
computed
tahoeutilization
simulation
tahoe utilization

Fig. 7: TCP tahoe and reno utilization

n n 12n

n
n 1

n 1 nn_1

i 1
i 1 i 2i i 1

i i

1
p p

2
1 2

2p p
2

for(i n 2 to0)
1 1

l (2)p ()p
2 2
l

p }
2

+

−

−

+
+ ++

=

+
=

= −

= + +

=

(10)

The utilization and drop rate that are calculated
with these algorithms are shown in Fig. 7 and 8.

Simulation study: In order to verify our analytical
model, the utilization of the TCP Tahoe and Reno are
obtained by computer simulation. A scenario is
simulated using ns2 with a network of two subnets
(receiver and sender) that communicate through a
server with a base station. The base station buffer size
is assumed to be 100 packets. The simulation runs 5
times, each lasting 100 seconds. Figure 7, shows both
simulated and calculated utilizations from these two
algorithms versus window size. As can be seen, the
simulation results closely follow the calculation results
as expected. The drop rate versus window size is also
found for these two algorithms and the results are
shown in Fig. 8. As we see, in the same window size

World Appl. Sci. J., 7 (Special Issue of Computer & IT): 75-79, 2009

79

0
10
20
30
40
50
60

window size

simulated
reno drop
rate
computed
reno
droprate
simulated
tahoe
droprate
computed
tahoe
droprate

Fig. 8: TCP tahoe and reno drop rate

Reno has better utilization and lower drop rate than of
the Tahoe because of using fast recovery algorithm.
This means that Reno is more efficient than Tahoe for
the same window size. This due to the fact that Reno in
facing timeout or packet loss only halves its window
size while for the same problems, Tahoe initializes its
window to one which takes a longer time to recover.

CONCLUSION

In this paper TCP Reno and Tahoe are explained
based on their Markov models. These models are used
to derive two iterative algorithms to calculate utilization
and drop rate. The calculation results are verified by
simulation results. It is shown that TCP Reno
outperforms TCP Tahoe because of using fast recovery
algorithm.

REFERENCES

1. Stevens, W., 1999. TCP Slow Start, Congestion
Avoidance, Fast Retransmit,Recovery Algorithms.
RFC 2001, http://www.faqs.org/rfcs/rfc2001htl

2. Padhye, J. and S. Floyd, 2001. On Inferring TCP
Behavior, Computer Communications Review
ACM-SIGCOMM, Vol: 31.

3. Ewerlid, A., 2001. Reliable communication over
wireless links, in NordicNRS, Sweden.

4. Kirov, M.G., 2005. A Simulation analysis of the
TCP control algorithm. International Conference
on Computer System and Technologies,
CompSysTech.

5. Jacobson, V., 1988. Congestion Avoidance and
Control. Computer Communication Review,
18 (4): 314-329.

6. Jacobson, V., 1988. Congestion Avoidance and
Control. Proceedings of SIGCOMM '88 Workshop,
ACM SIGCOMM, ACM Press, Stanford, CA,
pp: 314-329.

7. Pilosof, S., R. Ramjee, D. Raz, Y. Shavitt and P.
Sinha, 2003. Understanding TCP Fairness over
Wireless LAN. IEEE INFOCOM, 2: 863-872.

8. Jacobson, V., 1988. Congestion avoidance and
Control. Proceedings of 88 workshop, ACM
SIGCOMM, ACM. Press, Stanford, CA,
pp: 314-329.

9. Fall, K. and S. Floyd, 1996. Simulation-Based
Comparisons of Tahoe, Reno, TCP. Computer
Communication Review, 26 (3): 5-21.

