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Abstract: The smooth approximate solution of nonlinear second order boundary value problems are 
developed by using non-polynomial quintic spline function. A new approach convergence analysis of the 
presented methods is discussed. Some examples are considered in our references. By considering the 
maximum absolute errors in the solution at grid points and tabulated in tables for different choices of step 
size. We conclude that our presented method produces the accurate results in comparison with those 
obtained by the existing methods.
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INTRODUCTION

We consider the nonlinear two-point boundary 
value problem

''u f(x,u),u(a) ,u(b) , a x b= = λ = µ ≤ ≤ (1)

where f (x, u) is sufficiently differentiable on [a,b] 
and a, b, λ and µ are arbitrary real finite constants. For 
existence and uniqueness of a solution of (1) see [2]. 
Special differential equations of the second order and in 
particular systems of such equations, occur frequently, 
for instance in mechanical problems without dissipation
(see [2]). These special boundary-value problems also 
occur in other engineering contexts, for example in 
Troeshs problem relating to the confinement of a
plasma column by radiation pressure. A more
commonly used finite difference method for solving (1) 
numerically is discussed by many authors and we refer 
the reader in particular to Fox [l], Henrici [2], Aziz et
al. [3], Bramble et al. [4], Fischer et al. [5] and Usmani 
[6]. The possibility of using spline functions for
obtaining a smooth approximate solution of (1) is
briefly discussed by Ahlberg et al. [7]. Since then 
Albasiny and Hoskins [8], Bickley [9], Fyfe [10] and 
Sakai and Usmani [11] have used the cubic spline for 
obtaining approximations. Bhatta et al. [12] have used 
the spline functions of degree seven and eight, Usmani 
et al [13] used the Quintic spline, Also Usmani and 
Sakai [14] used cubic and quartic spline. Khan [15] 
used the parametric cubic spline. Rashidinia et al. [16] 
developed non-polynomial spline methods for the
solution of a system of obstacle problems. Tirmizi and 
Twizell [17] have been developed finite difference

methods of orders six and eight for numerical solutions 
(1).

Several techniques including decomposition,
homotopy perturbation, polynomial and non polynomial 
spline, Sink Galerkin, perturbation, homotopy analysis, 
finite difference and modified variational iteration have 
been employed to solve such problems [20-30]

In this paper, we will use the consistency relation 
of our non-polynomial quintic spline in [16] for
solution of (1) and we obtained sixth-order convergent 
for arbitraryα,β, p, r and s. Section 2 is devoted to the 
description of the methods and development of
boundary conditions. The new approach for
convergence analysis discussed in Section 3. Finally, in 
section 4, some numerical evidences are included to 
show the practical applicability and superiority of our 
methods and compare with the other methods.

DESCRIPTION OF THE METHOD AND 
DEVELOPMENT OF BOUNDARY CONDITIONS

Let us consider a mesh with nodal points xi i = 1(1) 
n on [a,b] such that:

0 1 n
b a

: a x x ... x b, h
n
−

∆ = = =  

We also denote the function value u (xi) by ui. For 
each segment [xi, xi+1], i = 0 (1) n-1, by using the non-
polynomial quintic spline relation derived in our paper 
[16] we have

i 2 i 1 i i 1 i 2

i 2 i 2 i 1 i 1 i2

pM rM sM rM pM
1

[ (u u ) 2( )(u u ) (2 4 ) u ]
h

− − + +

+ − + −

+ + + + =

α + + β−α + + α − β
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where

2 2

2 2

1
1 1 16 6
1

1 16
1 1

1 1 1 1
1 16 3

p , r 2[ (2 ) ( )],

s 2[ ( 4 ) ( 2 )],

( )( csc( ) 1), ( )(1 cot( )),

( )( ) , ( )( ),

α

θ θ

θ θ

= α + = α + β − α − β

= α + β − α − β

α = θ θ − β = − θ θ

α = − α β = − β

(2)

At the mesh point xi the proposed differential
equation (1) may be discretized by

f ( x , u )i i iM = (3)
where

''S ( x ) , u u ( x )i i i i iM = =

Substituting (3) in the spline relation (2), we obtain

2
i 2 i 2 i 2 i 1

2 2
i 1 i 1 i i i

2
i 1 i 1 i 2

2
i 2 i 2

( u ph f ( x ,u )) (2( )u

h r f ( x ,u )) ((2 4 )u s h f ( x , u ) )
(2( ) h rf(x ,u )) ( u

p h f (x ,u )) 0, i 2(1)n 2

− − − −

− −

+ + +

+ +

α − + β − α −

+ α − β −

+ β−α − + α −

= = −

(4)

To obtain unique solution for the nonlinear system 
(4) we need two more equation to be associate, so that 
we use the following boundary conditions. Following
[16] in order to obtain the sixth-order boundary formula 
we define the following identities:

3 5
2

k 0 k 0
3 5

2

k 0 k 0

(8)'' 8u b u t h u ),i 1,k k k k 1 0

(8)'' 8u b u t h u ),i n 1,k n k k n k n 1 n

h

h

a

a

= =

= =

+ + =

+ + = −− − −







∑ ∑

∑ ∑
(5)

In order to obtain unknown coefficients a’s and b’s 
in (5) by Taylor’s expansion we obtain: 

2179
0 1 2 3 1 n 1 60480

179 1057 39 6141 1
0 1 2 3 4 5 240 120 40 60 240 24

(a , a , a , a ) ( 10,19, 8,1),t t ( )

( b , b , b , b , b , b ) ( , , , , , )
−

−

= − − = =

=

CONVERGENCE ANALYSIS

In this section, we investigate the convergence
analysis of the method. The equation (4) along with 
boundary  condition  (5)  yields  nine  diagonal
nonlinear  systems  of  equations  and  may  be  written 
in matrix form as:

(1) 2 (1) (1) (1)
0A U h Bf (U ) R+ = (6)

in (6) the matrices A0 and B are order (n- 1) and are 
given by

0

19 8 1
8 18 8 1
1 8 18 8 1

A

1 8 18 8 1
1 8 18 8

1 8 19

− − 
 − − − 
 − − − −
 
 =  
 

− − − − 
 − − − 
 − − 

1057 39 6141 1
120 40 60 240 24
672 2952 672 12

360 360 360 360
672 2952 67212 12

360 360 360 360 360

672 2952 67212 12
360 360 360 360 360

672 2952 67212
360 360 360 360

61 39 10571 41
24 240 60 40 120

B

−

− − − −

− − −− −

− − −− −

− − −−

−

 
 
 
 
 
 =  
 
 
 
 
  

(7)

where A0, is a monotone five band matrix of order n-1,
with 0 ijA (a )∗ =  is a tri-diagonal matrix defined by 

ij

2, i j 1,2,...,n 1
a 1, i j 1

0, otherwise

= = −
= − − =



(8)

And ij1A (a )•= , is a tri-diagonal matrix defined by

ij

4, i j 1,2,...,n 1
a 1, i j 1

0, otherwise

•

= = −
= − =



(9)

The matrixes f(1) and R(1) each have (n-1)
components and are given by

(1) (1) (1)
1 n 1f (f ,...,f )−= (10)

where
(1) (1) (1) (1)

l l lf (U ) f ( x , u ), l 1(1)n 1= = −

and
2179

0240
2

0

(1)

2
n

2179
n240

10 h f(x , )
h f(x , )
0

R
0

h f(x , )
10 h f ( x , )

 λ − λ
 
−αλ+ λ 

 
 

=  
 
 
 −αµ+ λ
 

µ − λ  

 (11)

(1) (1)2 (1) (1) (1)
0A U h Bf (U ) R t+ = + (12)
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where the vector 

(1)
lU u(x) , l 1(1)n 1= = −

is the exact solution and t(1) = [t1, t2,…,tn-1]T is the 
vector of order n-1 of local truncation errors. From (6) 
and (12) we have:

(1) 2 (1) (1) (1)
0 kAE [A h BF (U )]E t= + = (13)

where
(1)(1) (1) T

1 2 n 1E U U [ e ,e ,...,e ]−= − =

(1)(1) (1) (1) (1) (1)
kf (U ) f (U ) F ( U )E− = (14)

and
(1) l

k (1)
l

f
F ( U ) diag{ },l 1(1)n 1

u
∂

= = −
∂

(15)

is a diagonal matrix of order n-1.

Lemma 3.1 If M is a square matrix of order n and 
M 1, then 1

( I M )
−

+ , exists and

11( I M ) 1 M
−+

−


To explain the existence of A−1 since

2 ( 1 )
0 kA A h BF (U )= +

we have to show

0 00 1A A A 6A∗ ∗= +

is nonsingular.

Lemma 3.2 The matrix A0 is nonsingular and 

2(b a)1
0 244h

A −− ≤ (16)

Proof: by using lemma 3.1 and Henrici [2] we shall 
first require bounds for the element of

0

1 *(a ),ij(A )∗ − =

where
j(n i)

, i j* naij i(n j)
, i jn

 −
≥

= 
− ≤

(17)

2n i n
j(n i) i ( n j)

n n
j 1 j 1 j i 1

*a ij
n
8

− −

= = = +

= + ≤∑ ∑ ∑ (18)

where the equality holds only if n is odd. Inequality can 
be written as 

0

1
2(b a)

28h
(A )∗ − −

≤ (19)

Also by using [13] we have

0 0 0

1 1 11
1 16

11 ,1 2
(A A 6A ) (I A ) (6A )A ∗ ∗ − − ∗ −− ≤ + = +

By using lemma 3.1 11
16(I A )−+ exists and we get 

0

0 0

1 2
1

1 21
16

(6A ) (b a)
(A A 6A )

1 A 44h

∗ −
∗ ∗ − −

+ ≤ =
−

(20)

where the norm referred to is the L∞ norm.

Lemma 3.3: The matrix 

2 ( 1 )
0 kA A h BF (U )= +

is nonsingular, provided 

11
23(b a)

Y ≤
−

where

l

(1)

(1)
l

f
Y max ,l 1(1)n 1

u
∂

= = −
∂

Proof: We know that 

0

2 (1) 2 1 (1)
0 k 0 kA h BF (U )] A [ I h A BF (U )][ −+ = +

we need to show that inverse of

0

2 1 (1)
k[I h A BF (U )]−+

exist. By using lemma 3.1, we have

0 0

2 1 (1) 2 1 (1)
k kh A BF (U ) h A B F (U ) 1− −≤  (21)

by using (20), (21) and

l

(1)
(1)

k (1)
l

f
B 12, F ( U ) Y max ,l 1(1)n 1

u
∂

≤ ≤ = = −
∂

we obtain 
11

23(b a)
Y ≤

−

As a consequence of Lemmas 3.1, 3.2 and 3.3 the 
nonlinear system (6) has a unique solution if 
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11
23(b a)

Y ≤
−

We give alternative method in the theorem 3.1 to 
show that the matrix

2 ( 1 )
0 kA A h BF (U )= +

is monotone.

Theorem 3.1: If 
11

23(b a)
Y ≤

−

then the matrix A. given by (13) is monotone.

Proof: From (13) we have 

2 ( 1 ) 2 2 ( 1 )
0 k kA A h BF (U ) P h BF (U )= + = +

Hence

2 2 (1) 2
kAP I h BF (U )P− −= +

2 1 2 (1) 2 1
k

2 (1) 2 2 (1) 2 2
k k

2 (1) 2 3 2 (1) 2
k k

2 (1) 2 2 2 (1) 2 4
k k

P A (I h BF (U )P )

I (h BF (U )P ) (h BF (U )P )
( h BF (U )P ) ... [ I (h BF (U )P )]

[I ( h B F (U )P ) (h BF (U )P ) ...],

− − −

− −

− −

− −

= + =

− + −

+ = −

+ + +

Also if then, the two infinite series convergence. Let 

2 (1) 2
k(h BF (U )P ) 1−ρ 

then, the two infinite series convergence. We obtain

2 2 2 (1) 2
k

2 (1) 2 2 2 (1) 2 4
k k

[P P (h BF (U )P )]
[I ( h B F (U )P ) (h BF (U )P ) ...]

− − −

− −

−

+ + +

where the infinite series is nonnegative. Hence to show 
that A is monotone, it sufficient to show that

2 2 2 (1) 2
k[P P (h BF (U )P )] 0− − −− 

Here we have

2 2 2 (1) 2
k

2 (1) 2 2 (1) 2
k k

2 1 (1)
0 k

P P h BF (U )P

I h BF (U )P h BF (U )P

h A B F (U ) 1

− − −

− −

−

⇒

⇒

≤ <



 (22)

By substituting 1
0A , B− and ||Fk (U(1))|| into (22) 

we get 

11
23(b a)

Y ≤
−

Theorem 3.2 Let u (x), be the exact solution of the 
boundary value Problem (1) and we assume ui, i = 1 (1) 
n-1 be the numerical solution obtained by solving the 
system (13) then we have E = O (h6), provided

11 1 5 1 56 246, , ,p , r , s2 12 12 360 360 3603(b a)
y ≤ α = β = = = =

−

Proof: We can write the error equation (13) in the 
following form

0 0

0 0

(1) 2 (1) 1 ( 1 )
0 k

2 1 (1) 1 1 ( 1 )
k

(1) 2 1 (1) 1 1 (1)
k

E [A h B F (U )] t

[I h A BF (U )] A t ,

E [I h A BF (U )] A t

−

− − −

− − −

= + =

+

≤ +

It follows that

1 ( 1 )
0

2 1 ( 1 )
0 k

A t
E ,

1 h A B F (U )

−

−
≤

−
(23)

provided that 

2 1 ( 1 )
0 kh A B F (U ) 1,− <

following [16] we have 

8
(1) 82179hM

t
60480

≤ (24)

where

( 8 )
8M maxu ( ) , a b= ξ ≤ ξ ≤ (25)

Substituting

1 (1)
0 kA , B , F (U )−

and ||t (1)||, from above relations in (24) and simplifying 
we obtain

2 6
68

2

2179(b a) h M
E O(h )

60480(44 12(b a) Y )
−

≤ ≡
− −

(26)

Provided that 

11
23(b a)

Y ≤
−
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NUMERICAL ILLUSTRATIONS

In order to test the viability of the proposed method 
based on non-polynomial spline and to demonstrate its 
convergence computationally, we consider the
following three test boundary-value problems.

Example 1: We consider the following boundary-value
problem

2u'' u 2 sin( x),u(0) u(1) 0− + π = π π = =

with the exact solution, u(x) = sin (πx)
This problem has been solved using our method 

with different values of n = 8, 16, 32, 64, 128 and also 
the maximum absolute errors in solutions are tabulated 
in Table 1. The maximum absolute errors in solutions 
of this problem are compared with method in [18] for n 
= 10. and tabulated in Table 2.

Example 2: We consider the following boundary-value
problem

2(1 x u)u" , u(0) u(1) 02
+ += = =

with the exact solution,

2u(x) x 12 x= − −−

We  applied  our  method  to solve this problem 
with n = 8, 16, 32, 64, 128 and the computed solutions 
are  compared  with  the  exact  solution  at grid points. 
The maximum absolute errors at the nodal points, max 
= |u(xi)-ui| are given to comparison with references [17, 
19]. The observed maximum absolute errors are
tabulated in Table 3.

Example 3: We consider the following example in [12] 
and

2 ''x u 2u x, u(2) u(3) 0= − = =

With the exact solution,
2 319x 5x 36u(x) 38x
− −=

We applied our method  to  solve this problem for 
n = 8, 16, 32, 64 and the computed solutions are
compared with the exact solution at grid points. The 
observed   maximum   absolute errors are tabulated in 
Table 4. In this table we compared our results with the 
results given [12]. This shows that our results are more 
accurate.

Table 1: Maximum absolute errors for example 1
n Our method
8 1.47×10−7

16 6.76×10−9

32 1.42×10−10

64 2.26×10−12

128 1.05×10−14

Table 2: Maximum absolute errors for example 1
x Our method In [18]
0.1 1.47×10−7 1.51×10−4

0.2 8.24×10−8 2.25×10−4

0.3 4.87×10−8 2.27×10−4

0.4 2.57×10−8 1.97×10−4

0.5 1.78×10−8 1.00×10−6

0.6 2.57×10−8 2.95×10−4

0.7 4.87×10−8 6.55×10−4

0.8 8.24×10−8 1.03×10−4

0.9 1.47×10−7 1.36×10−3

Table 3: Maximum absolute errors for example 2
n Our method In [17] In [19]
8 1.66×10−6 6.32×10−7 7.72×10−6

16 1.68×10−8 6.33×10−9 2.01×10−7

32 1.05×10−10 1.57×10−10 4.15×10−9

64 1.11×10−12 2.72×10−12 7.50×10−11

128 3.42×10−14

Table 4: Maximum absolute errors for example 3
n Our method In [17]
8 1.78×10−9 1.31×10−8

16 1.62×10−11 1.56×10−10

32 7.51×10−13 1.53×10−12

64 3.68×10−15 1.53×10−14

CONCLUSION

The approximate solutions of the second-order
nonlinear boundary-value problems by using non-
polynomial spline, show that our method are better in 
the sense of accuracy and applicability. These have 
been verified by the maximum absolute errors max |e i|
given in tables. A new approach convergence analysis 
of the presented method is discussed.
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