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Boundary-Layer Flow and Heat Transfer of a Power
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Abstract: The forced convection heat transfer to the power law non-Newtoman nanofluid from the stretching
surface has been investigated numerically. This is the first paper on non-Newtonian with stretching sheet in
nanofluids. The stretching of the surface velocity and the prescribed surface temperature 1s assumed to vary
as a linear function of the distance from the origin. A similarity solution is presented which depends on
nanoparticle volume fraction ¢ power law index #, buoyancy convection parameter A and the modified Prandtl
mumber NPr. Velocity and Temperature variations as well as the variation of skin friction and Nusselt number
with the parameters govern the problem is presented and discussed. Different types of nanoparticles are tested.

Key words: Nanofluid - Boundary laver flow - Stretching Sheet - Non-Newtonian

INTRODUCTION

Nanofluid 15 a colloidal solution of nanosized
solid particles m  liquids. Nanoflnds
anomalously high thermal conductivity in comparison
to the base fluid, a fact that has drawn the interest
of lots of research groups. Thermal conductivity of

show

nanofluids depends on factors such as the nature of
base fluid and nanoparticle, particle concentration,
temperature of the fluid and size of the particles.
Also, the nanofluids
properties
comparison to the base fluid. Therefore numerous
methods have been taken to improve the thermal
conductivity of these flmds by suspending nano/micro
sized particle materials in liquids.

Polidor et al. [1] mvestigated the natural convection
heat transfer of Newtoran nanofluids in a laminar external
boundary-layer via the integral formalism approach.
Moghadassi ef al. [2] presented a model of nanofluds
effective thermal conductivity, According to this model,
conductivity  changes nonlinearly  with
nanoparticle loading. Jain et al. [3] used the technique of
Brownian dynamic simulation coupled with the Green
Kubo model has been used in order to compute the
thermal conductivity of nanofluids. There have been
published several recemt numerical studies on the

show significant change in

such as viscosity and specific heat in

thermal

modeling of natural convection heat transfer in
nanofluids.

Congedo et al. [4], Ghasemi and Aminossadati [5],
Ho et al. [6, 7], Oztop and Abu-Nada [8], etc. These
studies have used traditional finite difference and
finite volume techniques with the tremendous call on
computational these  techniques
necessitate. A very good collecton of the published
papers on nanofluids can be found in the book by
Das et al. [9] and m the review papers by Wang and
Mujumdar [10-12] and Kakag¢ and Pramuanjaroenkij [13].

A number of industrially important fluids such
as molten plastics, polymers, pulps, foods, etc. exhibit
non-Newtonian fluid behavior. Due to the growing use
of these
manufacturing and processing industries, considerable
efforts have been directed towards understanding
nanofluids heat transfer characteristic. Many of the
inelastic non-Newtoman fluids encountered in chemical
engineering processes, are known to follow the empirical
Ostwald-de Waele model [14], or the so-called “power-law
model” in which the shear stress varies according to a
power function of the strain rate. Bizzele and Slattery [15]
extended a simple integral method originally suggested
for an isothermal flat plate by Acrivos et al [16] to
examine the momentum equation for a pseudoplastic
fluid flow past an axisymmetric body. Nakayama et al. [17]
suggested a general integral solution procedure for the
analysis of the mixed convective heat transfer to the
power-law-non-Newtonian fluids from bodies of arbitrary
geometrical configuration.

resources  that

non-Newtonian substances 1n  various
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Cobble [18] studied the problem of an incompressible,
non-Newtoman power-law fluid lowmg over flat plate
under the mfluence of a magnetic field and a pressure
gradient and with or without fluid mjection or ejection.
Tashtoush et al [19] mvestigated heat transfer
characteristics of a non-Newtoman fluid on a power-law
stretching surface of variable temperature with suction or
injection. Uniform surface temperature and variable
surface  temperature considered. Andersson and
Dandapat [20] extended the work of Crane [21] to non-
Newtonian power law fluid over a linear stretching sheet
and further extended by Hassanien et al. [22] to include
heat transfer analysis. Sahu et al. [23] considered the
momentum and heat transfer in a power law fluid from a
continuous moving plate. A rigorous dervation and
subsequent analysis of the boundary layer equations, for
power law fluds provided by Demier and Dabrowska [24].
They focused on boundary layer flow drmiven by free
stream U{x) =x", 1.e., Falkner—Skan type.

The heat, mass and momentum transfer in the laminar
boundary layer flow on a stretching sheet are important
from theoretical as well as practical point of view because
of their wider applications to polymer technology and
metallurgy. Elbashbeshy and Bazid [25] studied flow and
heat transfer in a porous medium over a stretching surface
with internal heat generation and suction/blowing when
the surface 1s kept at constant temperature.

Nazar ef al. [26] studied the unsteady boundary layer
flow mn the region of stagnation-point on a stretching
sheet Layek et al [27] investigated the steady two-
dimensional stagnation-point flow of an mcompressible
viscous fluid towards a porous stretching surface
embedded m a porous medium subject to suction/blowing
with internal heat generation or absorption. Tshak et al.
[28] studied the effect of a uniform transverse magnetic
field on the stagnation point flow toward a vertical
stretching sheet. Raptis and Perdikis [29] investigated the
effect of a chemical reaction of an electrically conducting
viscous fluid on the flow over a non-linearly (quadratic)
semi-infinite  stretching sheet in the presence of a
constant magnetic field which 1s normal to the sheet. Abel
et al. [30] presented a mathematical analysis for the
momentum and heat transfer characteristics of the
boundary layer flow of an incompressible and electrically
conducting viscoelastic fluid over a linear stretching
sheet. The momentum boundary layer equation includes
both the effect of transverse magnetic and electric fields.

In the present study, the similarity solution of

flow and heat
viscous

two-dimensional transfer of an
mcompressible power-law  non-Newtoman

nanofluid past a vertical stretchung surface 15 presented.
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The resulting ordinary differential equations are then
solved numerically. The aim 1s to mvestigate the influence
of various nanofluid parameter (the solid volume fraction
of the nanoparticles ¢ and the effect of power law index
n on flow and heat-transfer characteristics.

MATERIALS AND METHODS

Problem Formulation: Consider the steady two
dimensional state, mixed convection boundary layer flow
of an incompressible viscous nanofluid obeying power
law model. Two equal and opposite forces are introduced
along the sheet so that the wall is stretched linearly whilst
keeping the position of the origin fixed. The positive x-
coordinate is measured along the direction of the motion,
with the slot as the origin and the positive y-coordinate 1s
measured normal to the surface of the sheet and is
positive from the sheet to the fluid. Assume the velocity
#,(x) and the temperature T (x), at the continuous
stretching surface are linear function of x, x is the distance
from the slit (see eqn. 5). The temperature at ambient fluid
has constant value 7. Tt 18 further assumed that the
regular flmd and the suspended nanoparticles are in
thermal equilibrium and no slip occurs between them. The
thermo physical properties of the nanofluid are given in
Oztop and Abu-Nada [8]. Under the above assumptions,
the boundary layer equations governing the flow and
temperature in the presence of heat source or heat sk are
(using the boundary layer approximations and neglecting
viscous dissipation).

du dv
-4+ — =0
Jx Oy (1
Qu Su 1 &  fu,
e (Y T -T,
u@x V@y Pnf[ }Unfay( Gy) 8(Pﬁ)nf( 1]
(2)
LT, er_ '
ox oy a2 3)

Where u, v are the velocity components in the x and y
directions, respectively, 7" 1s the local temperature of the
fluid, » is the power law index, B is the heat source/sink
parameter, g is the acceleration due to gravity. Further, p,,
1s the effective density, u, is the effective dynamic
viscosity, (pC,) is the heat capacitance, (pf3), the thermal
expansion coefficient, «, 1s the effective thermal
diffusivity and k;; is the effective thermal conductivity of
the nanofluid, which are defined as (see Oztop and Abu-
Nada [8]; Aminossadati and Ghasemi [31])
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Where ¢ is the solid volume fraction of the nanoparticles.

The appropriate boundary conditions for the problem are given by

u=u,(x)=bx, v=0, T=Tw(x)=Tm+A(§) at y=0 )

#—0, T'—>7, as y—>w

Where b 1s the linear stretching constant, / 1s the characteristic length and A4 1s a constant whose value depends on the
properties of the fluid.
By mtroducing the following non-diumensional variables
1 -1

n= Z(R@;)ﬁ, V=X, (Rex)EF(n), )= T-1n
x

— ©)

Where P(x, ) is the stream function, 77 is the similarity variable, FF and & are the dimensionless similarity functions,
Re, = x,(u,,) is the local Reynolds number and u = Z¥/ay, v = —3d¥/dx.
Using (6), equations (1) to (3) leads to the following non-dimensional ODEs

n i m Zn " '
m(—fr) 7 +[1—¢+¢(Pg/9f)} (mFF —FZ)

i
+ A[1-0+9((pB), /(pP),1]0 =0 7

L g (1646000, HpC) K F O F8)=0

NPr &, PR (8)

2

Where wypr= bx (Re, y 2/} 1s the modified Prandtl number (for power law fluids), 4 =+ Gr/Re, is the buoyancy
o

b
convection parameter and Gr, = gf{(T, — T.) xb™ / v, is Grashof number. It is worth mentioning that A > G and A <0
correspond to the assisting and opposing flows, respectively, while 4 = 0, i.e. (T, = 7.) represent the case when the
buoyancy force is absent.
The boundary conditions (5) become

F=0,F=108=1at 1=0
F'-0, 0-0as n-o &)

We noticed that the absence of nanoparticles volume fraction and the buoyancy parameter, Eqs. (8) and (9) reduce
to those of Hassamen ef al. [22].
The physical quantities of practical interest in this work are the skin friction coefficient C; and the local Nusselt

number Nu,, which are defined as
L
2 XK
Cp= Hop | Qu , Nu, = #{G_‘Tj (10)
=0 Ke(ly T\ Oy =0
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Using equations {6) and (11), the skin friction coefficient Crand the local Nusselt number Ni,, can be expressed as

1
(Re)" 1 Cp=—2

(1- ¢)2.5

RESULTS AND DISCUSSION

The system (7) and (8) with the boundary conditions
(9) have been solved numerically for some values of the
governing parameters ¢, Npr, 4 and » using finite
difference method. Tn order to bring out the salient
features of the flow and the heat transfer characteristics
the numerical values are plotted n Figures 1-8. These
figures depict the velocity profiles (Figures 1, 3, 6), the
temperature profiles (Figures 2, 4, 5, 6), the vanation of the
skan friction at the wall (Fig. 7) and the variation of the
Sherwood mumber (Figures &) at the wall for different
values of the physical parameters. It worth to mention that
for n=1 the problem transforms to Newtoman fluid.

Figures 1 and 2 are the graphical representations of
the velocity F'(n) and the temperature 8(n) for various
values of the Cu nanoparticles volume fraction for two
values of power law index # = (=0.4 and 1) when 4 =1 and
Npr = 6.8 (water). Tt is found from Figure 1 that the
momentum boundary layer thickness decreases with the
mcrease in ¢. Then, the existence of nanfluids leads to
more thinming of the boundary layer. While, from figure 2
the thermal boundary layer thickness increases with the
increase in the nanoparticle volume ¢. Also it 1s the
thermal boundary layer for Cu-water 1s greater mare than
for pure water (¢ = 0), this because the cupper has high
thermal conductivity and the addition of it increase the
thermal conductivity for the fluid, so the thickness of the
thermal boundary layer increases. Furthermore, we notice
both momentum and thermal boundary layers are
decreased as the power law parameter increases.

Figures 3 and 4 depicts the effect mixed convection
parameter A for Cuwpure-water on the velocity and the
temperature, respectively, when n = 0.4. It 1s seen that the
momentum boundary layer increases while the thermal
boundary layer decreases when A increases and at each
value of A the thickness of the momentum boundary layer
in Cu-water 1s smaller than for pure water while the thermal
boundary layer thickness in Cu-water is greater than for
pure water. Tt is also seen the momentum boundary layer
thickness for the case of assisting flow is greater than for
opposing flow, while the thermal boundary layer
thickness has opposite behavior. This is due to the fact
that A > 0 physically means heating of the fluid or cooling
of the surface while 4 < 0 means cooling of the fluid or
heating of the surface.

(~F"(0))', (Rey)"! Nu, = 5 poy
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Fig. 1: Velocity profiles for various ¢ when # = 0.4 and
n = 1 (Newtonian fluid) with A = 1.
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Fig. 2. Temperature profiles for various ¢ when n = 0.4
and »n = I (Newtonian fluid) with 4 = 1 .
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Figure 5 shows the behavior of the temperature for
various values of NPr for Cu/pure-water when # = 0.4 and
A =1.Ttis seen that increase in the values of MPr leads to
decrease the thickness of the thermal layer and at each
value of NPr the thickness of the thermal boundary layer
in Cu-water 1s greater than for pure water.
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Fig. 3: Velocity profiles for various A when ¢ =0
{(pure water), ¢ = 0.1 withn = 0.4.

Cu-Water

Fig. 4: Temperature profiles for various 4 when ¢ =0
(pure water), ¢ = 0.1 withn = 0.4.

Figure 6 shows the behavior of the velocity and the
temperature for different types of nanofluids when ¢ =
01, n =04, Npor = 68 and 4 = 1. Tt is seen that both
momentum and thermal boundary layer thicknesses
change with the change of the type of nanoparticles, this
means the addition of nanoparticles in regular fluid will
play an important rule to develop the industry.

Figures 7 and 8 show the variation in shear stress and
heat transfer rates versus the power law parameter » for
Cu-water. Figures 7 shows the effect of the nanoparticles
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Fig. 5. Temperature profiles for wvarious Npr when
¢=0 (pure water), ¢=0.1 with n=0.4 and A=1.

Fig. 5: Velocity and temperature profiles for different
typesof nanofluids when ¢=0.1, n=0.4, NPr=6.8
and A=1.

volume fraction ¢ on the shear shear stress, while
Figures 8 depict the effect ¢ on the heat transfer rates
for the assisting flow (4 = 1) and opposing flow 4 =1.
Tt is seen from figure 5 that the shear stress increases
with the increase ¢ also one can see that the change
in the shear stress decreases with the increase #.
Also from Fig. 8 it is noted that the heat transfer rates
increases with the increase ¢ and the change in the
heat transfer rates mcreases with the increase n.
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Fig. 7: Variation of the skin friction with # for various ¢
when A =-1,1.

Also, for fixed values of # and ¢ it observed that the
value of the shear stress for opposing flow is greater than
for assisting flow, while the heat transfer rates for
assisting flow is greater than for opposing flow.

CONCLUSION

The problem of two-dimensional lammar mixed
power-law
nanofluid over a vertical stretching surface has been
studied. A smnilarity solution is presented and the
numerical solutions are discussed.  This  solution
depends on the nanoparticle volume fractione, power
law parametern, mixed convection parameter A and the
modified Prandtl number NPr. The working fluid is
water with the Prandtl number of Pr = 6.8. We have
explored the way in which the velocity and temperature
profiles as well as the surface skin friction and the surface

convection flow of a non-Newtoman

heat flux depend on these parameters. It 1s shown that the
mclusion of nanoparticles mto the base fluid of this
problem is capable to change the flow pattern. The
study of nanofluds 1s still at its stage so that it seems
difficult to have a precise idea on the way the use of
nanoparticles to understand the flow and heat transfer
characteristics of nanofluids and identify new and

unicue applications for these fluids.
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