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Abstract: Let S-Top be the category of topological S-acts over a topological semigroup S and S-SemiTop
be the category of semitopological S-acts over a semitopological semigroup S. It is obvious that any 
topological S-act is a semitopological S-act, however we will see that the converse is not true in general. In 
this note, we study the universal objects in the category of semitopological S-acts and introduce them 
completely. Furthermore, we study the left and right adjoint situation between the category of topological 
S-acts and the category of semitopological S-acts over a topological semigroup S. Similarly, we present the 
left adjoint to the inclusion functor from the category of topological semigroups (groups) to the category of 
semitopological semigroups (groups). Finally as a result of this study, we partially answer to this question 
that “when the point convergence topology is admissible?”
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INTRODUCTION

Topological groups and their actions have been 
studied by many mathematicians and have been
used in many fields such as geometry, Lie groups and 
analysis. Also many works have been done on
topological semigroups and their representations [1-5].
Semitopological S-acts, which sometimes are also
called flows [2, 3, 6], are studied by many authors in 
different branches of Mathematics (Normak in [7]
mentions some of these works).

Category theory has many applications in different 
branches of Mathematics and is studied by many
mathematicians. One of the main part of these studies is 
devoted to the study of universal objects in different 
categories. These studies are usually one of the first 
step in using categorical tools for studying classical
problems [8, 9]. In this note, we study the category of 
semitopological S-acts and then use it as a tool for 
studying a classical problem in function spaces. 

It is a famous problem that for which space X there 
exists an admissible topology on C(X,Y) for any space 
Y. Arens and Dugundji were the first topologists who 
studied and answered to this question for a Hausdorff 
space X, by investigating this question that for which 
Hausdorff space X, the compact-open topology on 
C(X,Y) is admissible [10, 11]. In fact, they showed that 
if X is a locally compact space, then the compact-open
topology on C(X,Y) is admissible for any space Y 
[12-15]. In this note, after we introduce the universal 

objects in S-SemiTop, as an application of our results,
we show that if X is the underlying space of an 
Alexanderoff topological monoid, then the point
convergence topology is admissible and it is equal to 
the compact-open topology. 

We now briefly recall some definitions about
S-acts needed in the sequel [16, 17].

The definitions of a subact A of B, written as A=B
and a homomorphism between S-acts are clear. In fact 
S-homomorphisms, or S-maps, are action-preserving
maps: f: A→B with f (sa) = sf(a), for s∈S, a∈A.

Recall that, for a semigroup S, a set A is a left 
S-act (or S-set) if there is, so called, an action
µ:S×A→A such that, denoting µ(s, a) := sa, (st)a = s(ta) 
and, if S is a monoid with 1, 1a = a. Right S-acts are 
defined similarly.

Each semigroup S can be considered as an S-act
with the action given by its multiplication.

Note that the free S-act, for a monoid S, on a set X 
is the set S×X with the action defined by t(s, x) = (ts, x) 
and ψ: X→S×X is given by ψ (x) = (1, x).

A topological congruence on a semitopological S-
act (A, t) is an S-act congruence θ (that is, if aθa' for a, 
a'∈A, then asθa's, for all s∈S) with the property that the 
S-act A/θ with the quotient topology can be made into a 
semitopological S-act. Recall that a congruence on a 
semigroup S is an equivalence relation θ on it such 
that for any s, s' and t∈S, if (s, s')∈ θ, then (st, s't) and 
(ts, ts') belong to θ.
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SEMITOPOLOGICAL S-ACTS
AND TOPOLOGICAL S-ACTS

In this section we briefly state the notions we need 
about semitopological S-acts. For more information see 
[2, 3, 7]. First recall the following

Definition 2.1: A semigroup S is a topological
semigroup if there is a topology tS on S such that the 
multiplication S×S→S is (jointly) continuous, where
S×S has the product topology. Equivalently, if st∈V
and V∈t S, there exist open sets Vs and Vt in t S

containing s and t, respectively, such that Vs Vt ⊆V.
In the language of category theory, topological

semigroups are semigroup objects in the category of 
topological spaces, in the same way that ordinary
semigroups are the semigroup objects in the category 
of sets.

Definition 2.2: For a topological semigroup S, a (left) 
S-topological act or a topological S-act is a left S-act A 
with a topology tA such that the action S×A→A is 
(jointly) continuous. Equivalently, if for sa∈U and 
U∈tA there exist open sets Vs∈t S and Wa∈t A containing
s and a, respectively, such that Vs Wa⊆U. The
topological S-maps between topological S-acts are
continuous S-maps.

Again, in the language of category theory,
topological S-acts are S-act objects in the category of 
topological spaces, in the same way that ordinary S-acts
are the S-act objects in the category of sets.

Notation 2.3: For any set H, we denote H with the 
discrete topology by (H, tdis). For any S-act A, by |A| 
we mean the underlying set of A.

Remark 2.4: Recall that for a semigroup S and an S-act
A, the functions λs and ρa are defined for any s∈S and 
a∈A as follows

s a: A A and : S A
y sy t ta
λ → ρ →
 

In the special case A=S, we use the notation
(S)
s :S Sλ → , to prevent misunderstanding.

Now if S has a topology τS for which its
multiplication S×S→S is (separately) continuous, that 
is, λs

(S) and ρs are continuous for any s∈S, then S is 
called a semitopological semigroup.

Similarly, one can define a semitopological S-act
on a semitopological semigroup by taking λs:  A→A
and ρa: S→A to be continuous for each s∈S and a∈A.

• As the first example for this definition, let S and T 
be semitopological semigroups such that S is a 
subsemigroup and also a subspace of T. Let λ be 
the restriction of the multiplication of T to S×T.
Then λ is an action of S on |T| and T is a
semitopological S-act with action λ.

• Let S be a semitopological semigroup and X be a 
topological space. For simplicity, we denote the 
free S-act over the underlying set of X by F0′ (X) 
(we will use this terminology in the rest of the 
paper). Consider the product topology on F0′ (X). 
Then F0′(X) with this topology is a semitopological 
S-act.

Clearly, any topological S-act is a semitopological 
S-act, because every jointly continuous function is 
separately continuous, however as we will see in
Example 2.16, the converse is not true in general. Note 
that for some topological semigroups, these definitions 
are equivalent. We will see an example of these
topological semigroups in Corollary 2.14 and we will 
use this fact to characterize the cofree topological S-act
over a topological space X.

We denote the categories of all sets, all left S-acts,
all topological spaces, all left topological S-acts, all left 
semitopological S-acts, with their appropriate maps, by 
Set, S-Act, Top, S-Top and S-SemiTop, respectively. 
We have the following diagram (a) of forgetful functors
between these categories

'
0U

Remark 2.5: (i) Let S be a semitopological monoid and 
H be a set. Let λ:S×HS→HS be defined by λ(s,f) :=s⋅f,
where (s ⋅f) (t): =f(st) for any function f∈HS and s,t∈S.
It is a known fact that HS with action λ is the cofree S-
act over H [17]. We will denote this S-act by K0(H). (ii)
Let Y and Z be two topological spaces. A topology t on 
the set C (Y, Z) is called splitting if for every space X,
the continuity of a map g: X×Y→Z implies the
continuity of the map g : X C (Y,Z)τ→ , defined by g

(x)(y) = g(x, y), for every x∈X and y∈Y. This topology 
is also called proper [12, 13]. A topology τ on C (Y, Z) 
is admis sible if the mapping ω(y, f) := f (y) from Y×C 
(Y, Z) into Z is continuous in y and f. Equivalently, a 
topology t on C (Y, Z) is admissible if for every

              Set                           Top

    U0                          U3                  U1

           S-Act                   S-SemiTop

                              U2
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topological space X, the continuity of f: X→Ct (Y, Z) 
implies the continuity of the map f : X×Y→Z, where
f (x, y) := f (x)(y) for every (x, y)∈X×Y [12-15] (the 
latter definition is usually used as the definition of
admissible topology, but for our purpose, we prefer to 
use the former). 

First, we study the universal objects in the 
category of semitopological S-acts with continuous 
S-homomorphisms. Then, we use these results to
get some conclusion about the category of
topological spaces, topological semigroups and
topological S-acts.

We begin our work with the free semitopological 
S-acts and we introduce the free semitopological S-act
over a topological space and then over an S-act.

Remark 2.6: (The free semitopological S-act over a 
set) Note that the free semitopological S-act over a set 
Z is the free semitopological S-act over the discrete 
space (Z, t dis).

Proposition 2.7: (The free semitopological S-act over a 
space) Let S be a semitopological monoid and (X, tX)
be a space. The free semitopological S-act over the 
space X is the free S-act F0′ (X) with topology t*,
where t* is the generated topology by the subbasis 
{O∈t |t∈A}  where A ={t|(F0′ (X),t)∈S-SemiTop and 
ψ: (X, t X)→(F0′ (X), t) is continuous}.

Proof: First note that the product topology on F0′(X)
belongs to A. Let (s, x)∈ F0′(X), t∈S and O be an open 
set in τj where τj∈A. Since (F0′(X), τj) is a
semitopological S-act, ? -1

t(O) and  are open sets 

in (F0′(X), τj) and S, respectively. So they are open in 
(F0′(X), τ*) and S, respectively. Hence (F0′(X), τ*) is a 
semitopological S-act. Since ψ: (X, τX)→(F0′(X), τj) is
continuous, ψ−1 (O) is open in X. Hence ψ: (X,
τX)→(F0′(X), τ*) is continuous. Now suppose that
we are given a semitopological S-act (A, τA) and a 
continuous function f: X→(A, τA). Since F0′ (X) is 
the free S-act over X, there exists an S-homomorphism

'
0f : F ( X ) A→  such that f fψ =  . We show that f is

continuous. For this purpose, we show that
A. Since  is a topology on 

F0′ (X) which makes it a semitopological S-act,
f fψ =  and furthermore f and ψ are continuous, it 
follows that A.

Hence, . Therefore f  is continuous 

and (F0′(X), τ*) is the free semitopological S-act over 
the space (X, τX).

Proposition 2.8: Let S be a semitopological monoid 
and A be an S-act. The free semitopological S-act
over the S-act A is (A, to), where to is the generated 
topology by the subbasis {O∈t|t∈A} where A = 
{t|(A, t)∈S-SemiTop}.

Proof: Let f : A→B be an S-homomorphism where A is 
an  S-act, (B, tB) is a semitopological S-act. Consider 
the topology t = {O⊆A|O = f-1(V) for some open set V 
in (B, tB)} on A. We claim that (A, t) is a
semitopological S-act. Since f is an S-homomorphism,
for any s∈S, f?λs: A→A→B is equal to λs?f: A→B→B.
Since B is a semitopological S-act, f?λs is continuous 
for any s∈S. Therefore  is open in (A, t), when O 
is open in (A, t). Hence λs is continuous. On the 
other hand, for any a∈A, f?ρa = ρ f(a). Therefore, since 
(B, tB) is a semitopological S-act and since for any 
open set O in (A, t), there exists an open set V in
(B, tB) such that O = f-1(V), the set  is open in S. 
Now define 

A = {t |(A, t)∈S-SemiTop}

and let τo be the generated topology by the subbasis 
{O∈t|t∈A}. It is straightforward to see that (A, τo) is a 
semitopological S-act. Furthermore, by the above
discussion it has the universal property, too. So (A, τo)
is the free semitopological S-act.

The following facts can be proved straightforward, 
so we state them without proofs.

Remark 2.9

(i) (Product) For any number of semitopological
S-acts {(Ai, t i)}i∈I, the product semitopological
S-act of (Ai, t i) is the product S-act Πi∈I Ai with the 
product topology.

(ii) (Equalizer) Suppose that (A, tA) and (B, tB) are 
semitopological S-acts and f, g: (A, tA)→(B, tB)
are two continuous S-homomorphisms. The
equalizer of f and g in S-SemiTop is E = {x∈A|f
(x) = g(x)} with the subspace topology which is 
inherited from (A, t A) and with inclusion.

(iii) (Pull back) Let (A, t A), (B, t B) and (C, tC) be 
semitopological S-acts and f: (A, tA)→(B, tB) and 
g: (C, tC) →(B, tB) be continuous S-maps. The pull 
back of this diagram is P = {(x, y)∈A×C |f (x) = 
g(y)} = {(x, y)∈A×C |f?π1((x, y)) = g?π2((x, y))} 
with the subspace topology and with inclusion.

(iv) (Coproduct) For any family of semitopological
S-acts {(Ai, t i)}i∈I, the coproduct semitopological 
S-act of (Ai, ti) is the coproduct S-act i∈I Ai with 
the topology of the discrete sum of (|Ai |, t i).
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Before we continue our study about pushout and 
coequalizer in the category  S-SemiTop, we need the 
following lemma which clarifies the concept of
semitopological S-act congruences.

Lemma 2.10: For a semitopological S-act (A, tA) and a 
congruence θ on it, the quotient S-act A/θ with the 
quotient topology is a semitopological S-act.

Proof: Let (A, tA) be a semitopological S-act and θ be a 
congruence on it. Consider an arbitrary [a]∈A/θ and 
s∈S and fix them. Obviously we have 

(ρ[a]: S→A/θ) = (p?ρa: S→A/θ).

Since A/θ has the quotient topology, p is
continuous and (A, tA) is a semitopological S-act, it 
follows that ρ [a] is continuous.

Now suppose that Uθ is an open set in A/θ with the 
quotient topology. Since p?λs: A→A/θ is a continuous 
function, p-1(λs

-1(Uθ)) is an open set in (A, tA). On the 
other hand 1 1

s( ( (U )))− − θπ π λ  is an open set in A /θ  with 
the quotient topology, since p-1(λs

-1(Uθ)) is an open set 
in A. Furthermore, since

1 1 1
s s(U ) ( ( (U )))− θ − − θλ = π π λ

it follows that sλ is continuous. 

By the above discussion, A/θ with the quotient 
topology is a semitopological S-act. So, any congruence 
on a semitopological S-act is topological. Similarly we 
can prove that for a semitopological semigroup S and a 
semigroup congruence θ on it, the quotient semigroup 
S/θ with the quotient topology is a semitopological 
semigroup. Recall that for an S-act A and a set
H⊆A×A, the generated S-act congruence on A exists 
over the set H ([17] for more information about the 
structure of the generated congruence). Therefore, by 
the above lemma, the generated topological congruence 
exists over any subset H⊆A×A, where (A, t A) is a 
semitopological S-act. So we have 

Remark 2.11

(i) (Coequalizer) For any given semitopological
S-acts (A, tA) and (B, t B) and continuous S-
homomorphisms f, g : (A, t A)→(B, t B), the
coequalizer of f and g is C = (A B)/θ with the 
quotient topology, where θ is the generated
congruence by the following set {(f (y),
g(y))|y∈A}.

(ii) (Push out) For any given semitopological S-acts
(A, t A), (B, t B), (C, t C) and continuous S-
homomorphisms f: (A, t A)→(B, t B) and g: (A,
t A)→(C, tC), the push out of this diagram is the 
following S-act with the quotient topology
((B C) (B C))/θ where θ is the generated
congruence on B C by the following set {(q1?g(x),
q2?f (x))|x∈A} and q1 and q2 are the embeddings 
from B and C to B C, respectively.

The following remark presents the cofree
semitopological S-act over an arbitrary set and an S-act.

Remark 2.12 

(i) For a semitopological monoid S and an S-act A, 
the cofree semitopological S-act over A is A with 
the trivial topology.

(ii) For a semitopological monoid S and a set H, the 
cofree semitopological S-act over H is K0(H) with 
the trivial topology.

The cofree semitopological over a topological
space is clarified in the following proposition.

Proposition 2.13: For a semitopological monoid S
and a topological space X with topology t X, the
cofree semitopological S-act over X is C (S, X) with 
the point convergence topology which is generated
by {(s, U)}U∈t S, s∈S.

Proof: It is easy to see that ψ is continuous.
Furthermore, for any s∈S, f∈C(S, X) and an open set 
({t}, U), we have

λs
−1 (({t},U)) = {g∈C(S,X)|g(st) = s⋅g(t)∈U}

= ({st},U)
ρ t

−1 (({t},U)) = {s′∈S|s ′⋅f (t)∈U}
= {s′∈S|f(s′t)∈U}
= {s′∈S|fρ t(s′)∈U} = ρ t

−1f−1(U)}

Clearly, the first set is open in S and the second set 
is open in C (S, X) with the point convergence
topology.

Now suppose that we are given a semitopological 
S-act (A, tA) and a continuous function h : (A, tA)→X.
Since XS is the cofree S-act over the underlying set of 
X, there exists an S-homomorphism h :  A→XS such 
that ψ? h  = h and we have h (a)(t) = h(ta). Now, since 
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and we know that h and λt are continuous, it follows 
that h is a continuous S-map. Clearly h is unique and 
commutes the diagram by the proof of the universal 
property of the cofree object in the category S-Act [17].
As a quick consequence of the above proposition, we 
have

Corollary 2.14: Let X be a topological space and S be 
a semitopological monoid which is an Alexandroff
space. Then S is a topological monoid and C (S, X) 
with the point convergence topology is the cofree
topological S-act over the space X. 

Proof: It is straightforward to see that the separately 
continuity of the multiplication S is equivalent to jointly
continuity of it. So S is a topological monoid. Similarly, 
one can easily conclude that any semitopological S-act
is a topological S-act for an Alexandroff topological 
semigroup. Therefore, S-SemiTop=S-Top. The rest of 
the proof is obvious by Proposition 2.13.

Georgiou and Illiadis studied the admissible and 
splitting topologies on the function space C(X,Y) with 
the compact-open topology, when Y is an Alexandroff 
space [14].

In the next corollary, we study admissible and 
splitting topologies on the function space C(X,Y) with 
the point convergence topology and compact-open
topology, where X is the underlying space of an
Alexandroff topological monoid. As a quick
consequence of the above corollary we have 

Corollary 2.15: Let X be a topological space which is 
the underlying space of an Alexandroff topological
monoid and Y be a topological space. Then the point 
convergence topology on C (X, Y) is admissible and 
splitting.

We know that if the point convergence topology is 
admissible, then the compact-open topology is
admissible. Also it is a well known fact that for
topological spaces X and Y, the splitting admissible 
topology on C(X,Y), if it exists, is unique [12-15].
Therefore by the above corollary, we know that the 
compact-open topology is equal to the point
convergence topology and it is admissible and splitting 
on the function space C(X,Y), when X is the underlying 
space of an Alexandroff topological monoid.

By Proposition 2.13, the cofree semitopological 
S-act over a space X, always exists. Furthermore, by 
Corollary 2.14, when S is an Alexandroff topological 
monoid, it is the cofree topological S-act over the space 
X. However the next example shows that the cofree 
semitopological S-act does not necessarily belong to 
S-Top. Therefore it is not the cofree topological S-act
over the space X in general. 

Example 2.16: Consider N with the discrete topology 
and its usual multiplication. Let S be the product
semigroup (N8 ,·) with the product topology and let X 
be the Sirpiskey space. Consider the point convergence 
topology on C (S, X). By Proposition 2.13. C(S,X) with 
this topology is a semitopological S-act. We claim that 
C(S,X) with this topology is not a topological S-act. For 
this purpose, we introduce a continuous function g:
S→X, a point s∈S and an open set U in C (S, X) such 
that sg∈U, but there is no open neighborhoods of g
and s, respectively such that Ws⋅Vg ⊆ U.

First note that since S is not connected, there exists 
a nonconstant continuous function g from S to {0, 1} 
with the discrete topology. So there exists a continuous 
function g from S to the Sirpinskey space X and a point 
(ni) in N8  such that g((n i)) = 1. Obviously, (1) g∈((ni),
{1}), where (1) denotes the element (ci) in N8 , where ci
=1 for any i. Now we show that C (S, X) with the point 
convergence topology is not a topological S-act. On the 
contrary, suppose that C (S, X) with this topology is a 
topological S-act. Therefore without lose of generality, 
we can assume that there exists an open set

m k
k 1 i k((y ),U )=∩  around g and an open set W1 around (1)

such that

”.

There is two possibilities for the open set
. First, suppose that for all k, Uk = {0,1}, 

then the constant zero function c0 belongs to
m k
k 1 i k((y ),U )=∩  and obviously c0((ni))≠1 which is a

contradiction. The second possibility is that there exists 
some k such that Uk = {1}. Since (( k

iy ), {0, 1}) = C (S, 
X), without lose of generality, we can assume that for 
each k, Uk = {1}. Since (1)∈W1 and for every function 
f∈C (S, X), (1). k

if ((y ),{1})∈ , we have f((yi
k))=1 for all 

k. We claim that there exists a continuous function h 
from S to X such that for all k, h((yi

k))=1 but h((n i)) = 
0. Now choose an open set U in S which does not 
contain {(ni)} (note that S is Hausdorff) and define

i
i

1; ( x ) U
h((x))

0; o.w.
∈

= 


Obviously since the non-empty open sets in S are 
{1} and {0,1}, h is continuous and for all k, h((yi

k)) = 1 
but h((ni)) = 0. So  but h((ni))≠1 which 
is a contradiction, since 
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Therefore C(S,X) is a semitopological S-act, but it 
is not a topological S-act. Hence C(S,X) with the 
point convergence topology is not the cofree
topological S-act.

Finally, in this note, we study the adjoint situation 
between S-SemiTop and S-Top.

Proposition 2.17: Let S be a semitopological
semigroup and A be an S-act. The free semitopological 
S-act over the S-act A is (A, t* ), where t*  is the 
generated topology on |A| by the subasis B =
{τ|(A,τ)∈S-SemiTop}.

Proof: First note that, similar to the proof of
Proposition 2.7, we can easily show that (A,τ*) is a 
semitopological S-act. Now let f:A→(B, τB) be an S-
homomorphism. Again, similar to the proof of
Proposition 2.7, we can easily show that {f−1(O)}O∈τB

belongs to B and hence {f−1(O)}O∈τB ⊆τ*. Therefore f is 
a continuous S-homomorphism and (A, t* ) is the free 
semitopological S-act over S-act A.

Proposition 2.18: Let S be a topological semigroup. 
For every semitopological S-act (A, tA), there exists a 
topology t F⊆t such that (A, t F) is the finest topology on 
A such that (i) (A, tF) is a topological S-act. (ii) t F is the 
finest topology on A which is contained in tA and 
satisfies (i). In fact, if F: S-SemiTop→S-Top is defined 
as follows

F ((A, t A)) := (A, t F),

then F is a left adjoint for inclusion I : S-Top→S-
SemiTop.

Proof: Let (A, t A) be a semitopological S-act. Define 

A := {t '⊆tA |(A, t')∈S-Top}.

Obviously t tri∈A and so A is not empty. Let t F
be the generated topology by the subbasis . We 
claim that (A, tF) is a topological S-act. So suppose 
that we are given a∈A, s∈S and U∈t F such that sa∈U
where . Clearly U∈t 1, for some t1∈A. Since 

(A, t1)∈S-Top, there exist open sets Va and Ws which 
contain a and s, respectively such that sa∈Ws · 
Va⊆U. Since t1∈t F, we have the result. Therefore tF
satisfies condition (i). By the definition of A, t F
satisfies condition (ii), too. The rest of the proof is 
obvious.

Similar to the proof of the above proposition, we 
can show that

Proposition 2.19: Let TopSgr be the category of
topological semigroups and SemiTopSgr be the
category of semitopological semigroups. The inclusion 
functor from TopSgr to SemiTopSgr has a left adjoint. 
More specially, there is a left adjoint for the inclusion 
functor from the category of topological groups to the 
category of semitopological groups.
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