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Abstract: In this paper, the existence and uniqueness of solution for fractional order Chen chaotic system 
is investigated theoretically based on the qualitative theory. The stability of the corresponding equilibria is 
also investigated similar to the integer order counterpart. According to the obtained results, the bifurcation 
conditions of these two systems are significantly different. Numerical simulations are presented to confirm 
the given analytical results.
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INTRODUCTION

Nowadays the behavior of many dynamical
systems can be properly described by using the
fractional order system theory. For example,
Phenomena in electromagnetic [1], quantitative finance 
[2], electrochemistry, material science [3] have been 
described using fractional differ-integration operators. 
Due to fundamental differences between Fractional
Order Differential Equations (FODE) and Ordinary
Differential Equations (ODE), most of characteristics or 
conclusions of the ODE systems cannot be directly 
extended to the case of the FODE systems. In recent 
times, many attempts have been dedicated to the study 
of chaotic dynamics of fractional-order differential
systems [4-7]. Many current results about fractional-
order chaotic systems, however, are attained only by 
numerical simulations. The aim of this paper is to
examine the stability and bifurcation for the fractional-
order Chen system. Similar to the results presented in 
[8], the existence and uniqueness about solutions of 
the fractional-order Chen system will be established. 
At the same time, the stability of equilibria of the
system will also be analyzed. More importantly, the 
fractional-order system can display a Hopf bifurcation 
under certain conditions which are entirely different
from the corresponding integer-order Chen system. The 
paper is organized as follows. Section 2 briefs basic 
concepts in fractional calculus and fractional
systems. In Section 3, the stability of equilibria and 
bifurcation for fractional-order Chen system are
analyzed according to the qualitative theory. Numerical 
simulations to illustrate the validity of the results are 
presented in Section 4 and finally, conclusions in 
Section 5 close the paper.

MATHEMATICAL BACKGROUND

The operator a tDα , where a and t are the limits of 

the operation and α∈R, is a combined differentiation 
and integration operator commonly used in fractional 
calculus. The continuous integro-differential operator is 
defined as: 

a t
t

a

d > 0
dt

D = 1 = 0

(d ) < 0

α

α

α

α


α

 α

 τ α
∫

(1)

There are different definitions for fractional
derivatives [9]. The Grunwald-Letnikov, Riemann-
Liouville and Caputo definitions are used for the
general fractional differ-integral. These definitions are 
briefly introduced in the following lines. The
Grunwald-Letnikov fractional order derivative of f(t) is 
defined as: 

a t
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j
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d f( t)
D f ( t ) = =

d(t a)
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(2)

The Riemann-Liouville fractional order derivative 
of f(t) is defined as: 

(n)t
t n 10 t0

1 x (u)
D x(t)= du

(n ) (t u)
α

α− +Γ − α −∫ (3)
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where α>0 and n is the first integer which is not less 
than α, i.e., n-1≤α≤n and Γ(.) is the Gamma function. 

z 1 t

0
(z)= t e dt

∞
− −Γ ∫

For a wide class of functions, the Grunwald-
Letnikov and the Riemann-Liouville definition are
equivalent [9]. The initial value problem related to 
Eq.(??) is 

t=0 0

D x(t)=f(t,x(t))
x(t)| = x

α

+





(4)

where 0<α<1 and 0D = D .α α  Looking at the questions of 
existence and uniqueness of the solution Eq. (4), we can 
present the following result that is very similar to the 
corresponding classical theorem known in the case of 
first-order equations.

Theorem 1: (Existence and Uniqueness Theorem [8]): 
Let f(t, x) be a real-valued continuous function, defined 
in the domain G, satisfying in G the Lipschitz condition 
with respect to x, i.e. 

1 2 1 2f ( t , x ) f(t,x ) | M | x x |− ≤ −

where M is a positive constant, such that |f(t,x)|=M<∞
for all (t,x)∈G. Let also 

s s 1n 1

n

MhK
(1 )

− +

≥
Γ + σ

(5)

Then there exists in a region a R(h, K) a unique 
and continuous solution x(t) of the following initial-
value problem, 

nD x( t)=f( t ,x )
σ (6)

k 1 t=0 k[D x(t)] = b , k=1,2 , ,nσ − 
 where 

k k k 1 1 k 1 k 1 k 2 1D D D D , D D D Dσ α α α σ α α α− − − −≡ ≡ 

k

k j j
j=1

= , (k=1,2, ,n); 0 < a 1σ α ≤∑ 

Furthermore, the above definition in one dimension 
can naturally be generalized to the case of multiple
dimensions. That is, let

T
1 2 nX(t )=(x( t ) ,x (t),...,x (t)) R∈

and
T

1 2 n i= ( , ,..., ) R , 0 < <1,i=1,2,...,nα α α α ∈ α

The n-dimension FODE is described as follows: 

't
t0 0

1 X (u)D X(t)= du
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The results of Theorem 2 can be easily generalized 
to the initial value problem of the vector-valued
functions (7).

STABILITY ANALYSIS OF 
FRACTIONAL-ORDER CHEN SYSTEM

Existence and uniqueness of solutions: The canonical 
integer-order Chen system can be described by the
following autonomous ODE [10]

1
2 1

2
1 1 3 2

3
1 2 3

dx
=a(x x )

dt
dx = ( c a)x x x cx
dt

dx
= x x bx

dt

 −

 − − +



−

(8)

which has a chaotic attractor with the parameters:
a = 35, b = 3 and c = 28. The corresponding fractional-
order Chen system can be written in the form as below: 
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Fig. 1: The fractional-order Chen chaotic attractor

where a,b and c are real parameters and 0<αi<1,
i = 1,2,3. Especially, for a set of parameter values:
a=35, b=3 and c = 28 and α = (0.985, 0.99, 0.98), the 
fractional-order Chen system can display chaotic
attractors [11] as shown in Fig. 1.

The chaotic dynamics of fractional-order Chen
system, as mentioned previously, is mainly
investigated by some researchers only through
numerical simulations [11-14]. Based on the qualitative 
theory and some existing results about FODE, the
following results can be deduced for the fractional-
order Chen system (9).

Theorem 2: The initial value problem of the fractional-
order Chen system (9) can be represented in the
following form: 

1

0

D X(t)=AX(t) x (t)BX(t)
X(0)=X ,t (0,T]

α +


∈
(10)

where

T 3 T
1 2 3 0 10 20 30X(t )=(x( t ) ,x (t),x (t)) R ,X = (x ,x , x )∈

and
a a 0 0 0 0

A = c a c 0 , B = 0 1 0
0 0 b 0 1 1

−   
   − −   
   −   

α= (α1, α2, α3)T and 0<αi<1(i = 1,2,3), some constant 
T>0, then it has a unique solution.

Proof: Let F(X(t)) = AX(t) + x1BX(t) which is
obviously continuous and bounded on the interval
[X0-δ,X0+δ] for any δ>0. Furthermore, one has 

1 1

|F(X(t) F(Y(t))|=
|A(X(t) Y(t)) x (t)BX(t) y (t)BY(t)|

−
− + − ≤

1( | |A || | |B | | ( |X( t ) | | y ( t ) | ) )
|(X(t) Y(t))| M|(X(t) Y(t)) |

+ +

− ≤ −

where

3
0M=||A | | | |B | | (2 |X | )>0,X(t),Y(t) R ,||.||and | . |+ +δ ∈

denote matrix norm and vector norm, respectively. The 
above inequality manifests that F(x(t)) satisfies a
Lipschitz condition. Based on the results of Theorem 1, 
we can conclude that the initial value problem of
fractional-order Chen system has a unique solution.

The analysis of equilibria and bifurcation: Now, we 
state two stability theorems on fractional order systems 
and their related results. The first theorem has been 
given for commensurate fractional order systems.

Theorem 3: [15]. The following autonomous system: 

0
d x =Ax, x ( 0 )= x
dt

α

α
(11)

with 0<α<1, x∈Rn and A∈Rn×n, is asymptotically stable 
if and only if |arg(λ)|>απ/2 is satisfied for all
eigenvalues λ of matrix A. Furthermore, the component 
of state decays towards 0 like t−α. Also, this system is 
stable if and only if |arg(λ)|≥απ/2 is satisfied for all 
eigenvalues (λ) of matrix A with those critical
eigenvalues satisfying |arg(λ)|=απ/2 have geometric
multiplicity of one.

The following theorem considers stability in the 
incommensurate fractional order systems.

Theorem 4: Consider the following n-dimensional
nonlinear fractional order system: 

1

2

n

1 1 1 2 n

2 2 1 2 n

n 3 1 2 n

D x f (x ,x ,...,x )

D x f ( x , x , . . . , x )
.
.
.

D x f ( x , x , . . . , x )

α

α

α

 =

 =






 =

(12)

where all αi s are rational numbers between 0 and 1. i = 
1, 2,…,n. Let eq eqeq eq

n1 2X = ( x , x ,...,x )  is the equilibrium 

of system (12), i.e. eq eq eq
i 1 2 2f (x ,x ,...,x ) = 0  for i = 1,

2,…,n and eq 1 2 nX
f

A = | , f = [ f , f , . . . , f ]
X
∂
∂

 is the Jacobian 

matrix at the point Xeq, then the point Xeq is
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asymptotically stable when m|arg(eig(A))|>
2

α π  where 

m i=max( ),i=1,2,...,n.α α

Proof: To evaluate the asymptotic stability of this 
point, we define: 

eq
i iix ( t ) = x (t), i=1,2, . . . ,n+ ε

which implies that 

eq eq eqi i i 1 2 n n1 2D ( t ) = f ( x ,x ,...,x )α ε + ε + ε + ε
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where eq eq eq
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where T
1 2 n= [ , ,..., ]ε ε ε ε
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and
i

ij eq
j

f
a = | ,i ,j=1,2,...n

x
∂
∂

By applying theorem3.2 like mt−α , ε(t) is decreasing if 

m|arg(eig(A))|>
2

α π

which implies that the equilibrium Xeq of the FODE
(12) is as asymptotically stable as their integer order 
counterpart.

Proposition 1

1. If a>2c, then system (9) only has one equilibrium
O(0,0,0);

2. If a<2c then system (9) has three equilibria,
O(0,0,0), C = ( (2c a)b, (2c a)b,2c a)+ − − − and

C = ( (2c a)b, (2c a)b,2c a)− − − − − − . system (9)
displays a bifurcation when c = 2c. Notice that we 
omit the proof here, which is obvious from the 
previous corollary. As can be observed, the results 
of Proposition3.2 is similar to the integer-order
Chen system. 

Proposition 2: With respect to the system (9), we have 

1. The equilibrium O is asymptotically stable when
b > 0
a > 2 c > 0




and O is unstable when
b < 0
a < 0 o r a 2c

 <

2. The equilibria C+ and C− are all asymptotically 

stable if
a

c > > 0
2

(a b c)c 2a(2c a ) > 0




 + − − −

Proof: (1). O

a a 0
A = c a c 0

0 0 b

− 
 − 
 − 

 is the Jacobian matrix 

of the system (9) at the equilibrium O, whose
corresponding eigenvalues are 

2 2

1,2 3
(a c) c 3a 6ac

= , = b
2

− − ± − +
λ λ − (17)
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One has λ1,2≤0, λ3≤0 when a>2c>0 and b>0,

so M|arg(spec(A))|= > ,
2

α π
π  where M i=max( 1)α α ≤ ,

1≤i≤3 Therefore the equilibrium O is asymptotically 
stable. Furthermore, one has λ3>0 when b<0 or if a<0
or a<2c the point O is unstable.

Proof: (2) The Jacobian matrix of system (9) at the 
points C+ and C− are 

C

a a 0

A c c (2c a)b

(2c a)b (2c a)b b

+

− 
 

= − − − 
 − − − 

(18)

and

C

a a 0

A c c (2c a)b

(2c a)b (2c a)b b

−

− 
 

= − − 
 − − − − − 

(19)

respectively. However, they share the same
characteristic equation 

3 2f ( ) = U V W = 0λ λ + λ + λ + (20)

where U = a+b-c, V = bc and W = 2ab(2c-a) From 
Routh-Hurwitz criteria, the eigenvalues of Eq. (13)
are all negative if U>0, V>0, UV>W>0. Through
simplifying computation, these inequalities can be
reduced as: 

2

a
c > > 0

2
2ab > c 3a > 0
c




 + −

Remark 1: The integer-order Chen system displays
a Hopf bifurcation when c > [ ( 17 3)a/2]−  and

2 2c 3ac 2a
b =

c
+ − . But the corresponding fractional-

order system will not produce bifurcation under the 
same conditions. The numerical simulations in the next 
section will support the result. 

NUMERICAL METHODS AND SIMULATIONS

According to the Adams predictor-corrector
scheme shown in [16, 17], the numerical solution of the 
initial value problem for fractional-order Chen system 

(9) will be yielded as below: Set T
h =

N
,

nt =nh,n=0,1,...,N Z ,+∈ the system (9) can be
discredited as follows:

1 p p
1n 1 1,0 2n 1 1n 1

1
q
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3
p q
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( 2)

bx x )

α

+ + +

+
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(21)

where
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p
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n
q

1,j,n 1 2 j 1j1n 1
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n
q

2,j,n 1 1j 2 j 1j2n 1
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1
x = x ((c a)x x x x )
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1
x = x (x x bx )
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∑
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n
q

3,j,n 1 1j 2 j 3 j3n 1
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)
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i
i ii,j,n 1

i

h= ((n j 1) (n j) ), 0 j n
α

α α
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α

i,j,n 1

1i ii

1 1 1i i i

n (n )(n 1) j 0
1 j n,

(n j 2) (n j) 2(n j 1)
i 1,2,3.

1 j n 1

+

α + α

α + α + α +
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 − − α + =
≤ ≤

− + + − − − + =
 = +


To verify the success of the obtained results, some 
numerical simulations for the fractional-order Chen
system have been conducted. All the differential
equations are solved by using the above-mentioned
method (21). In the following simulations, let α =
(0.985, 0.99, 0.98) and h = 0.01.

Figure 2 shows that the states x1(t)x2(t) and x3(t)
of the system (9) are asymptotically decreasing
towards zero, where a = 35, b = 3 and c = 10 and the 
corresponding initial states are set as x10 = 12, x20 = -5,
x30 = -13. In particular, as depicted in Fig. 3, when
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Fig. 2: The states of fractional-order Chen system when 
c<a/2

Fig. 3: The zero point of fractional-order Chen system 
is unstable when c>a/2

Fig. 4: The equilibrium C+ of fractional-order Chen
system is locally asymptotically stable when 

a
c > > 0

2
,

22a
b > c 3a > 0

c
+ −

Fig. 5: The equilibrium C− of fractional-order Chen
system is locally asymptotically stable when

2a 2a
c > > 0 , b > c 3a > 0

2 c
+ −

Fig. 6: The C+ point of fractional-order Chen system is 
still locally asymptotically stable when 

22a
b > c 3a > 0

c
+ −

c = 19, the point O is still unstable even though the 
initial value is small enough, where x10 = 0.02, x20 = -
0.01, x30 = +0.01.

Figure 4 and 5 demonstrate that equilibria C+ and 
C− are locally asymptotically stable when 

a
c > > 0

2
22a

b > c 3a > 0
c

+ −

where a = 35, b = 4, c = 20 and the initial values are 
x10 = 8, x20 = 5, x30 = 3 and x10 = 8, x20 = 2, x30 = 3,
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respectively. As illustrated in Fig. 6, when a = 6, 
c = 4 and 

22a
b = 8 > c 3a = 4

c
+ −

the equilibria C+ and C− still display their locally
asymptotical stability. This phenomenon is significantly 
different from the corresponding integer-order Chen 
system which exhibits a Hopf bifurcation when 

a
c > > 0

2

22a
b = c 3a

c
+ −

i.e. the equilibria C+ and C− will lose stability once 

22a
b < c 3a

c
+ −

CONCLUSION

The dynamics of fractional-order Chen chaotic
system has been investigated in this paper. A strict 
proof of existence and uniqueness of solutions for 
the fractional-order Chen chaotic system has been 
provided, as well as its stability in contrast with
the integer-order Chen system. It has been shown 
that the fractional-order Chen system has the
similar equilibria and stability with the integer-order
counterpart. However, the bifurcation conditions is
fundamentally different between these two systems. 
Numerical solutions and simulations confirm the
given analytic results.
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