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Abstract: In this paper, we implemented two very reliable techniques which are called He’s Homotopy
Perturbation (HPM) and Tanh methods for solving evolution equations. The proposed algorithms have been 
successfully tested on an important evolu tion equation namely Hirota-Satsuma coupled system. The 
calculations demonstrate the effectiveness and convenience of Tanh method for nonlinear system of PDEs.
Numerical results are very encouraging. 
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INTRODUCTION

Nonlinear coupled partial differential equations are 
very important in a variety of scientific fields,
especially in fluid mechanics, solid state physics,
plasma physics, plasma waves, capillary-gravity waves 
and chemical physics. The nonlinear wave phenomena 
observed in the above mentioned scientific fields, are 
often modeled by the bell-shaped sech solutions and the 
kink-shaped tanh solutions. The availability of these 
exact solutions, for those nonlinear equations can
greatly facilitate the verification of numerical solvers 
on the stability analysis of the solution [2, 3]. In this 
study, we consider two coupled KdV equations. This 
paper outlines the implementation of two very efficient 
and reliable techniques which are called He’s homotopy 
perturbation method (HPM) and Tanh method for
solving system of coupled equations which are very 
important in applied sciences. The HPM [8-16, 17-21]
and Tanh methods have been successfully tested on 
Hirota-Satsuma coupled system. It is worth mentioning 
that homotopy perturbation method (HPM) was
developed by He [11-16] by merging the standard 
homotopy and perturbation. The hyperbolic tangent 
(tanh) method is a powerful technique to symbolically 
compute traveling wave solutions of one-dimensional
nonlinear wave and evolution equations. In particular, 
the method is well suited for problems where
dispersion, convection and reaction diffusion
phenomena play an important role [1]. 

OUTLINE OF THE TANH METHOD

The tanh method will be introduced as presented 
by Malfliet [4] and by Wazwaz [5-7]. The tanh method 

is based on a priori assumption that the traveling wave 
solutions can be expressed in terms of the tanh function 
to solve the coupled KdV equations. The tanh method is 
developed by Malfliet [4]. The method is applied to 
find out exact solutions of a coupled system of
nonlinear differential equations with three unknowns:

1 x x x t t t xx xx xxP(u,v,w,u , v , w , u , v , w , u , v ,w ,..........) 0=

2 x x x t t t xx xx xxP(u,v,w,u ,v ,w , u , v , w , u ,v ,w ,..........) 0=

3 x x x t t t xx xx xxP ( u , v , w , u , v , w , u , v , w , u , v ,w ,..........) 0= (2.1)

where P1, P1, P1 are polynomials of the variable u, v, w
and its derivatives. If we consider u (x, t) = u (ξ), ν (x, 
t) = ν (ξ), w (x, t) = w (ξ), ξ = k (x-λt), so that u (x, t) = 
U (ξ), ν (x, t) = ν (ξ), w (x, t) = W (ξ), we can use the 
following changes:

d
k ,

t d
∂
= − λ

∂ ξ
d

k ,
x d
∂
=

∂ ξ

2 2
2

2 2
dk ,

x d
∂ =
∂ ξ

3 3
3

3 3
dk ,

x d
∂ =
∂ ξ

and so on, then Eq. (2.1) becomes an ordinary
differential equation 

/ // ///
1Q ( U , U , U , U ,..........) 0=

/ // ///
2Q ( U, U, U ,U ,..........) 0=

/ // ///
3Q ( U , U , U , U ,..........) 0= (2.2)
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with Q1, Q1,  Q1 being another polynomials form of 
there argument, which will be called the reduced
ordinary differential equations of Eq. (2.2). Integrating 
Eq. (2.2) as long as all terms contain derivatives, the 
integration constants are considered to be zeros in view 
of the localized solutions. However, the nonzero
constants can be used and handled as well [7]. Now 
finding the traveling wave solutions to Eq. (2.1) is 
equivalent to obtaining the solution to the reduced 
ordinary differential equation (2.2). For the tanh
method, we introduce the new independent variable 

Y(x,t) tanh( )= ξ (2.3)

that leads to the change of variables:

2d d
(1 Y )

d dY
= −

ξ

2 2
2 2 2

2 2
d d d2Y(1 Y ) (1 Y )

d dY dY
= − − + −

ξ

3
2 2

3

2 3
2 2 2 3

2 3

d d
2(1 Y )(3Y 1)

d dY
d d6Y(1 Y ) (1 Y )

dY dY

= − −
ξ

− − + −

(2.4)

The next crucial step is that the solution we are 
looking for is expressed in the form

m
i

i
i 1

u(x,t) U( ) a Y
=

= ξ = ∑

n
i

i
i 1

v(x,t) V( ) b Y
=

= ξ =∑

s
i

i
i 1

w(x,t) W( ) c Y
=

= ξ =∑ (2.5)

where the parameters m, n, s can be found by balancing 
the highest-order linear term with the nonlinear terms 
in Eq. (2.2) and 0 1 m 0 1 m 0 1 mk, ,a ,a,....,a ,b ,b , . . . . ,b ,c,c ,. . . . ,cλ

are to be determined. Substituting (2.5) into (2.2)
will yield a set of algebraic equations for

0 1 m 0 1 m 0 1 mk, ,a ,a,....,a ,b ,b , . . . . ,b ,c,c ,. . . . ,cλ because all
coefficients of Yi have to vanish. From these relations,

0 1 m 0 1 m 0 1 mk, ,a ,a,....,a ,b ,b , . . . . ,b ,c,c ,. . . . ,cλ can be obtained. 
Having determined these parameters, knowing that m,
n, s are positive integers in most cases and using (2.5) 
we obtain analytic solutions u (x, t), ν (x, t), w (x, t) in a 
closed form [7]. The tanh method seems to be powerful 
tool in dealing with coupled nonlinear physical models.

HOMOTOPY PERTURBATION METHOD (HPM)

To explain the homotopy perturbation method, we 
consider a general equation of the type,

L (u) = 0 (3.1)

where L is any integral or differential operator. We
define a convex homotopy H (u, p) by

H(u,p) (1 p)F(u) pL(u)= − + (3.2)

where F (u) is a functional operator with known
solutions v0, which can be obtained easily. It is clear 
that, for

H (u, p) = 0 (3.3)
we have

H (u, 0) = F (u) H (u, 1) = L (u)

This shows that H (u, p) continuously traces an 
implicitly defined curve from a starting point H (v0, 0) 
to a solution function H (f, 1). The embedding
parameter monotonically increases from zero to unit as 
the trivial problem F (u) = 0 is continuously deforms 
the original problem L (u) = 0. The embedding
parameter p ∈(0, 1] can be considered as an expanding 
parameter [2-10, 12-16]. The homotopy perturbation 
method uses the homotopy parameter p as an expanding 
parameter [5-10] to obtain 

2

i 2 3
i 0 1 3

i 0

u p u u p u p u p u ,
∞

=

= = + + + +∑  (3.4)

if p→1, then (3.4) corresponds to (3.2) and becomes the 
approximate solution of the form,

ip 1
i 0

f limu u
∞

→
=

= = ∑ (3.5)

It is well known that series (3.5) is convergent for 
most of the cases and also the rate of convergence is 
dependent on L (u); see [11-16]. We assume that (3.5) 
has a unique solution. The comparisons of like powers 
of p give solutions of various orders. 

NUMERICAL APPLICATIONS

In this section, we apply the proposed tanh and 
homotopy perturbation methods for solutions of system 
of coupled KdV equations. 

Example 4.1.1 Consider the following Hirota-Satsuma
coupled system 
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( )t xxx x
1

u u 3uu 3 vw x 0
2

− + − =

t xxx xv v 3uv 0− − = (4.1)

t xxx xw w 3uw 0+ − =

with initial conditions

( ) ( )2 2 21
u(x,0) 2k 2k tanh kx

3
= β − +

( ) ( ) ( )
2 2 2 2

0
2
1 1

4 k c k 4k k
v(x,0) tanh kx

3c 3c

− β + β +
= + (4.2)

( )0 1w(x,0) c c tanh kx= +

where c0, c1 and β are constants. The exact solution of 
the problem is given by

( ) ( )2 2 21
u(x,t) 2k 2k tanh k(x t)

3
= β− + + β

( ) ( ) ( )
2 2 2 2

0
2
1 1

4k c k 4k k
v(x,t) tanh k(x t)

3c 3c

− β + β +
= + + β (4.3)

( )0 1w(x,t) c c tanh k(x t)= + + β

 Applying homotopy perturbation method (HPM)

( )

( )( )( )( )

t 3 3
0 1 0 1

0 1 0 0 13 3
0

t

0 1 0 1
0

1 u u u u
u pu u (x,t) p p 3 u pu p dx

2 x x x x

p 3 v pv w pw x dx

  ∂ ∂ ∂ ∂ + + = + + + − + + + +     ∂ ∂ ∂ ∂   

+ + + + +

∫

∫

   

 

( )
t 3 3

0 1 0 1
0 1 0 0 13 3

0

v v v v
v pv v (x,t) p p 3 u pu p dx

x x x x
  ∂ ∂ ∂ ∂ + + = + + + + + + + +     ∂ ∂ ∂ ∂   

∫   

( )
t 3 3

0 1 0 1
0 1 0 0 13 3

0

w w w w
w pw w (x,t) p p 3 u pu p ds

x x x x
  ∂ ∂ ∂ ∂ + + = + − + + + + + + +     ∂ ∂ ∂ ∂   

∫   

Comparing the co-efficient of like powers of p, following approximants are obtained

( ) ( )

( )

( )
( )

( )

2 2 2
0

2 2
0

0 2(0)
1

2 2

1

0 0 1

1
u ( x , t ) 2k 2k tanh kx

3
4k c k

v (x,t )
3cp :

4k k
tanh kx

3c
w (x,y,t) c c tanh kx

 = β − +

 − β +

=

 β + +



= +

,

( ) ( )2 2 2
1

3

(1)
2

1 2

2

1 2

1
u (x, t) 2k 2k tanh kx

3
coshx 2tsinhx2

cosh x
p : cosh x coshx tsinhx

v ( x , t ) 2
cosh x

cosh x coshx tsinhx
w (x,y,t) 2

cosh x

 = β − +


+ −

  + + =  
  


 − + + =    


The solution is given by 

( ) ( ) ( )

( )

2 2 2 5 2 3 4
3 7

3 4 3 2 2 5 3
7

1 coshx 2tsinhx 2
u(x,t) 2k 2k tanh kx 2 c o sh x 3t cosh x 2tsinhxcosh x

3 cosh x cosh x
2

2t sinhxcosh x 20t sinhxcosh x 2t cosh x 24t sinhx
cosh x

+
= β − + − − − +

− − + + +

( ) ( ) ( )

( )

2 2 2 5 2 3 4
3 7

3 4 3 2 2 5 3
7

1 coshx 2tsinhx 2
u(x,t) 2k 2k tanh kx 2 c o sh x 3t cosh x 2tsinhxcosh x

3 cosh x cosh x
2

2t sinhxcosh x 20t sinhxcosh x 2t cosh x 24t sinhx
cosh x

+
= β − + − − − +

− − + + +
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( ) ( )

( )

2
5 2 5 2 3

0 1 2 6

4 3 2 6 3
6

cosh x coshx tsinhx 1w(x,t) c c tanh kx 2 2cosh x t c o sh x 2t cosh x
cosh x cosh x

1
2tsinhxcosh x 8t cosh x sinhx 2cosh x 16t s inhx

cosh x

 − + += + + + + − 
 

+ + − − +
(4.4)

The closed form solution is given as 

x y t x y t x y t(u,v,w) (e ,e ,e )+ − − + − + +=

Example 4.1.2: Re-consider the following Hirota-
Satsuma coupled system 

( )t xxx x
1

u u 3uu 3 vw x 0
2

− + − =

t xxx xv v 3uv 0− − = (4.5)

t xxx xw w 3uw 0+ − =

Fig. 1: Solution u (x, t)

Fig. 2: Solution v (x, t) b = 0, k = t = c0 = c1 = 1

Using the traveling wave transformations:
m

i
i

i 1

u(x,t) U( ) a Y
=

= ξ = ∑

n
i

i
i 1

v(x,t) V( ) b Y
=

= ξ =∑

n
i

i
i 1

w(x,t) W( ) c Y
=

= ξ =∑ (4.6)

Where
Y tanh( )= ξ (4.7)

k(x t)ξ = +β (4.8)

The nonlinear system of partial differential
equations (4.5) is carried to a system of ordinary
differential equations

/ 3 /// / / /

/ 3 /// /

/ 3 /// /

1
k U k U 3kUU 3kVW 3kWV 0

2

k V k V 3kUV 0

k W k W 3kUW 0

β − + − − =

β − − =

β + − =

(4.9)

we postulate the following tanh series in (4.6) and
the transformation given in (4.7) and (4.8) the first 
equation in (4.9) reduces to

Fig. 3: Solution w (x, t) 
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2 3
2 3 2 2 2 2 2 3

2 3

2 2 2

dU 1 dU d U d Uk (1 Y ) k[2(1 Y )(3Y 1) 6Y(1 Y ) (1 Y ) ]
dY 2 dY dY dY

dU dW dV
3kU(1 Y ) 3kV(1 Y ) 3kW(1 Y ) 0

dY dY dY

β − − − − − − + −

+ − − − − − =
(4.10)

the second equation in (4.9) reduces to

2 3
2 3 2 2 2 2 2 3 2

2 3

dV dV d V d V dV
k (1 Y ) k[2(1 Y )(3Y 1) 6Y(1 Y ) (1 Y ) ] 3kU(1 Y ) 0

dY dY dY dY dY
β − − − − − − + − − − = (4.11)

the third equation in (4.9) reduces to

2 3
2 3 2 2 2 2 2 3 2

2 3

dW dW d W d W dW
k (1 Y ) k[2(1 Y )(3Y 1) 6Y(1 Y ) (1 Y ) ] 3kU(1 Y ) 0

dY dY dY dY dY
β − + − − − − + − − − = (4.12)

Now, to determine the parameters m, n and s, we 
balance the linear term of highest-order with the highest 
order nonlinear terms. So, in (4.10) we balance U/// with
WV/, to obtain

6 + m-3 = 2 + n + s-1, then m = n + s-2

while in Eq. (4.11) we balance V/// with UV/, to obtain

6 + n-3 = 2 + m + n-1 then n = 2, m = s =1

The tanh method admits the use of the finite
expansion for both:

2
0 1 2 2u(x,t) U(Y) a a Y a Y a 0= = + + ≠ (4.13)

0 1 1v(x,t) V(Y) b b Y , b 0= = + ≠ (4.14)
and

0 1 1w(x,t) W(Y) c c Y , c 0= = + ≠ (4.15)

Substituting U, U/, U//, U///, V, V/, V//, V/// and W, W/,
W//, W///, in (4.10), then equating the coefficient of Yi,
i= 0, 1, 2, 3 leads to the following nonlinear system of 
algebraic equations

0 2
1 1 0 1 0 1 1 0Y : a k a 3a a 3 b c 3 b c 0β + + − − =

1

1 2 2
2 2 0 2 1 1Y : 2 a 8a k 3a 6a a 6 b c 0β+ + + − =

2 2
1 1 2Y : k a 3a a 0− + =

3 2 2
2 2Y : 2a k a 0− + = (4.16)

Substituting U, V, V/,  V//,  V/// in Eq. (4.11), then 
equating the coefficient of Yi, i= 0, 1, 2, 3 leads to the 
following nonlinear system of algebraic equations

0 2
0 1Y : [ 2k 3a ]b 0β + − =

1
1 1Y : 3 a b 0− =

2 2
1 2 1Y : 2k b a b 0− − = (4.17)

Substituting U, W, W/, W//, W/// in Eq. (4.12), then 
equating the coefficient of Yi, i= 0, 1, 2, 3 leads to the 
following nonlinear system of algebraic equations

0 2
0 1Y : [ 2k 3a ]c 0β − − =

1
1 1Y : 3a c 0− =

2 2
1 2 1Y : 2k b a b 0− = (4.18)

Solving the nonlinear systems of equations (3.12) 
and (3.13) with help of Mathematica we can get:

Case 1
2

2
0 1 2

2k
a , a 0 ,a 2k

3
β +

= = = +

2 2 2 2
0

1 0 2
1 1

4k ( 3k ) 4 k c ( 3k )b , b
3c 3c
β + − β+= =

Then:
2

2 2ß 2k
u(x,t) 2k tanh ( k (x ß t) )

3
+

= + +

2 2 2 2
0

2
1 1

4 k c ( 3k ) 4k ( 3k )v(x,t) tanh( k (x ß t))
3c 3c

− β+ β += + +

0 1w(x,t) c ctanh( k (x ß t))= + + (4.19)

Case 2
2

2
0 1 2

2k
a , a 0, a k

3
β +

= = = −
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2 2 2 2
0

1 0 2
1 1

4k ( 3k ) 4 k c ( 3k )b , b
3c 3c

− β + β+= =

Then:
2

2 2ß 2k
u(x,t) 2k tanh ( k (x ß t))

3
+

= − +

2 2 2 2
0

2
1 1

4k c ( 3k ) 4k ( 3k )v(x,t) tanh( k (x ß t))
3c 3c
β + β += − +

0 1w(x,t) c ctanh( k (x ß t))= + + (4.20)

Case 3
2 2

0 1 2
2k k

a , a 0, a
3 3

β +
= = =

2 2 2 2
0

1 0 2
1 1

2k ( 3k ) 2 k c ( 3k )b , b
9c 9c
β + − β+= =

Then:
2 2

2ß 2k k
u(x,t) tanh ( k (x ß t))

3 3
+

= + +

2 2 2 2
0

2
1 1

2 k c ( 3k ) 2k ( 3k )v(x,t) tanh( k (x ß t))
9c 9c

− β+ β += + +

0 1w(x,t) c ctanh( k (x ß t))= + + (4.21)

Case 4
2

2
0 1 2

2k
a , a 0 , a 2k

3
β −

= = = +

2 2 2 2
0

1 0 2
1 1

4k ( k ) 4k c ( k )b , b
3c 3c
β + − β += =

Then:
2

2 2ß 2k
u(x,t) 2k tanh ( k (x ß t))

3
−

= + +

2 2 2 2
0

2
1 1

4 k c ( k ) 4k ( k )v(x,t) tanh( k (x ß t))
3c 3c

− β + β += + +

0 1w(x,t) c ctanh( k (x ß t))= + + (4.22)

Case 5
2

2
0 1 2

2k
a , a 0 , a k

3
β −

= = = −

2 2 2 2
0

1 0 2
1 1

4k ( k ) 4k c ( k )b , b
3c 3c

− β + β += =

Then:
2

2 2ß-2k
u(x,t) 2k tanh ( k (x ß t))

3
= − +

2 2 2 2
0

2
1 1

4k c ( k ) 4k ( k )v(x,t) tanh( k (x ß t))
3c 3c
β + β += − +

0 1w(x,t) c ctanh( k (x ß t))= + + (4.23)

Case 6
2 2

0 1 2
2k k

a , a 0 , a
3 3

β −
= = =

2 2 2 2
0

1 0 2
1 1

2k ( k ) 2k c ( k )b , b
9c 9c
β + − β += =

Then:
2 2

2ß 2k k
u(x,t) tanh ( k (x ß t))

3 3
−

= + +

2 2 2 2
0

2
1 1

2 k c ( k ) 2k ( k )v(x,t) tanh( k (x ß t))
9c 9c

− β + β += + +

0 1w(x,t) c ctanh( k (x ß t))= + + (4.24)

the solitary wave and behavior of the solutions u (x, t), 
ν (x, t) and w (x, t) are shown in Fig. 4-6 respectively 
for some fixed values of the parameters (β = 0.5,
k = 0.5).

0
5

10

15

0

5

10

15
5

10

15

20

Fig. 4: Represents Case 4. Solution u (x, t) k = β = 1

0
5

10
15

0

5

10

15
-3

-2.5

-2

-1.5

-1

-0.5

0

Fig. 5: Represents Case 4. Solution
ν (x, t) k = β = c0 = c1 = 1
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0

5

10

15

0

5

10

15
1

1.2

1.4

1.6

1.8

2

Fig. 6: Represents Case 4. Solution
w (x, t) k = β = c0 = c1 = 1

RESULTS AND CONCLUSION

In this paper, we applied the powerful Homotopy 
Perturbation (HPM) and tanh methods for solutions of 
nonlinear coupled partial differential equations. The
tanh method requires transformation formulas.
Traveling wave solutions, kinks solutions were derived. 
It is also observed that the solution of coupled KdV 
system of PDEs by the HPM is the same as case 4 of 
the Tanh method. 
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