A Different Perspective to Haruki's Lemma

Seyfullah Hizarci, Abdullah Kaplan and Nilgün Tortumlu

Atatürk University, K.K. Education Faculty, Department of Mathematics Education, Erzurum, Turkey

> Abstract: In this paper we investigate the nature of the constant in Haruki's Lemma and studied a new proof of the constant and a new theorem in the beams quadrangle.

Key words: Haruki's lemma. circle . beams quadrangle

INTRODUCTION

In his papers [1, 2] Ross Honsberger mentions a remarkably beautiful lemma that he accredits to Hiroshi Haruki. The beauty and mystery of Haruki's lemma is in its apparent simplicity. Yaroslav Bezverkhnyev [3] studied Haruki's lemma and a new related locus problem. We discussed a new proof of Haruki's lemma above.
From the Fig. 1, we have the following equality

$$
\frac{|\mathrm{AE} \cdot| \mathrm{BF} \mid}{|\mathrm{EF}|}=\mathrm{constant}[3]
$$

$$
\begin{align*}
|\mathrm{PF}| \cdot|\mathrm{FD}| & =|\mathrm{EF}| \cdot \mathrm{FG} \mid \\
& =|\mathrm{EF}|(|\mathrm{FB}|+|\mathrm{BG}|) \\
& =|\mathrm{AF}| \cdot|\mathrm{FB}| \\
& =(|\mathrm{AE}|+|\mathrm{EF}|) \cdot|\mathrm{FB}| \tag{1}\\
& =|\mathrm{AE}| \cdot|\mathrm{FB}|+|\mathrm{EF}| \cdot|\mathrm{FB}|=|\mathrm{EF}| \cdot|\mathrm{FB}|+|\mathrm{EF}| \cdot|\mathrm{BG}| \\
\frac{|\mathrm{AE}| \cdot|\mathrm{FB}|}{|\mathrm{EF}|} & =\frac{|\mathrm{EF}| \cdot \mathrm{BG} \mid}{|\mathrm{EF}|} \\
\frac{|\mathrm{AE}| \cdot|\mathrm{FB}|}{|\mathrm{EF}|} & =|\mathrm{BG}|
\end{align*}
$$

Lemma 1: Given two nonintersecting chords $A B$ and CD in a circle and a variable point P on the arc AB remote from points C and D , let E and F be the intersections of chords PC, AB and of PD, AB respectively. The following equalities hold:

$$
\frac{|\mathrm{AF}| \cdot \mathrm{BE} \mid}{|\mathrm{EF}|}=\frac{|\mathrm{AE}| \cdot|\mathrm{BF}|}{|\mathrm{EF}|}+|\mathrm{AB}|
$$

Proof: From the Figure 2, Following the notation and proof of Lemma 1, we have

Fig. 1: Proof of the constant

Fig. 2: Proof of the Hizarci's teorem

$$
\frac{|\mathrm{AE}| \cdot|\mathrm{FB}|}{|\mathrm{EF}|}=|\mathrm{BG}|
$$

Note that in Figure 2, we have equal angles, this means that the triangles AGD and CBD are similar $\mathrm{AGD} \square \mathrm{CBD}$

$$
\begin{equation*}
\mathrm{AGD} \square \mathrm{CBD} \Rightarrow \frac{|\mathrm{AG}|}{|\mathrm{BC}|}=\frac{|\mathrm{AD}|}{|\mathrm{CD}|} \text { and }|\mathrm{AG}|=\frac{|\mathrm{Bq} \cdot| \mathrm{AD} \mid}{|\mathrm{CD}|} \tag{2}
\end{equation*}
$$

Fig. 3: Last figure

$$
\begin{align*}
|\mathrm{AF}| \cdot|\mathrm{BE}| & =|\mathrm{AE}|+\mid \mathrm{EF}) \cdot|\mathrm{EF}|+|\mathrm{BF}|) \\
& =|\mathrm{EF}|(|\mathrm{FB}|+|\mathrm{BG}|) \\
& =|\mathrm{EF}|(\mathrm{FB}|+|\mathrm{BG}|) \tag{3}\\
& =|\mathrm{AE} \cdot| \mathrm{EF}|+|\mathrm{AE}| \cdot| \mathrm{BF}|+|\mathrm{EF}| \cdot| \mathrm{EF}|+|\mathrm{EF} \cdot| \mathrm{BF}| \\
\frac{|\mathrm{AF}| \cdot \mathrm{BE} \mid}{|\mathrm{EF}|} & =\frac{|\mathrm{AE}| \cdot|\mathrm{BF}|}{|\mathrm{EF}|}+|\mathrm{AB}|
\end{align*}
$$

From (1), (2) and (3) we have

$$
\begin{aligned}
& \frac{|\mathrm{AF} \cdot| \mathrm{BE} \mid}{|\mathrm{EF}|}=|\mathrm{AB}|+|\mathrm{BG}|=|\mathrm{AG}| \\
& \left\lvert\, \frac{|\mathrm{AF} \cdot| \mathrm{BE} \mid}{|\mathrm{EF}|}=\frac{|\mathrm{Bq} \cdot| \mathrm{AD} \mid}{|\mathrm{CDl}|}\right.
\end{aligned}
$$

Hizarci's Theorem: When points A, B, C, D all belong to the same circle and AC, BD are diagonals

$$
|\mathrm{Ad}| . \mathrm{BD}|+|\mathrm{AB}| \cdot \mathrm{cD}|=|\mathrm{Bq}| . \mathrm{AD} \mid
$$

Proof: We have similar triangles like ACD and GBD, so from the figure we can write

From

$$
\begin{align*}
& \mathrm{ACD} \mathrm{GBD} \\
& \qquad \begin{array}{l}
\frac{|\mathrm{AC}|}{|\mathrm{GB}|}=\frac{|\mathrm{CD}|}{|\mathrm{BD}|} \\
|\mathrm{GB}|=\frac{|\mathrm{Aq}| \cdot \mathrm{BD} \mid}{|\mathrm{CD}|}
\end{array} \tag{5}
\end{align*}
$$

From (3), (4) and (5) the following equalities hold:

$$
\begin{array}{r}
|\mathrm{AB}|+\frac{|\mathrm{Aq}| \cdot|\mathrm{BD}|}{|\mathrm{CD}|}=\frac{|\mathrm{Bq} \cdot| \mathrm{AD} \mid}{|\mathrm{CD}|} \\
|\mathrm{AC}| \cdot \mathrm{BD}|+|\mathrm{AB}| \cdot| \mathrm{CD}|=|\mathrm{BC}| \cdot| \mathrm{AD} \mid
\end{array}
$$

From the Figure 3, at ABCD beams quadrangle we have a.c + b.d $=\mathrm{x} . \mathrm{y}$

REFERENCES

1. Honsberger, R.., 1983. The Butterfly Problem and Other Delicacies from the Noble Art of Euclidean Geometry I, TYCMJ, 14: 2-7.
2. Honsberger, R., 2003. Mathematical Diamonds, Dolciani Math. Expositions No. 26, Math. Assoc. Amer.
3. Bezverkhnyev, Y., 2008. Haruki's Lemma and a related locus problem. Forum Geometricorum, 8: 63-72.
