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Abstract: In this paper we investigate the nature of the constant in Haruki’s Lemma and studied a new 
proof of the constant and a new theorem in the beams quadrangle.
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INTRODUCTION

In his papers [1, 2] Ross Honsberger mentions a 
remarkably beautiful lemma that he accredits to Hiroshi 
Haruki. The beauty and mystery of Haruki’s lemma is 
in its apparent simplicity. Yaroslav Bezverkhnyev [3] 
studied Haruki’s lemma and a new related locus
problem. We discussed a new proof of Haruki’s lemma 
above.
From the Fig. 1, we have the following equality
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Lemma 1: Given two nonintersecting chords AB and 
CD in a circle and a variable point P on the arc AB 
remote from points C and D, let E and F be the
intersections of chords PC, AB and of PD, AB
respectively. The following equalities hold:
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Proof: From the Figure 2, Following the notation and 
proof of Lemma 1, we have 

Fig. 1: Proof of the constant

Fig. 2: Proof of the Hizarci’s teorem
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Note that in Figure 2, we have equal angles, this 
means that the triangles AGD and CBD are

similar AGD CBD
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Fig. 3: Last figure
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From (1), (2) and (3) we have
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Hizarci’s Theorem: When points A, B, C, D all 
belong to the same circle and AC, BD are diagonals

AC .BD AB .CD BC.AD+ =

Proof: We have similar triangles like ACD and GBD, 
so from the figure we can write
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From(3), (4) and (5) the following equalities hold:
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From the Figure 3, at ABCD beams quadrangle we have

a.c b.d x.y+ =
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