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Abstract: Veevers and Boffey [1] identified 12 elementary balanced arrays. Zafar-Yab [2] confirmed the results
of Veevers and Boffey [1] and investigated that among those 12 arrays, six arrays are unique and the other six

are their associate partners. In this paper, there are 54 1somorphic classes contaiming 43-hulls. Among these
arrays 12 are vertically self-buildable arrays, after suitably augmentation these arrays become 1somorphic to
12 elementary balanced arrays identified by Veevers and Boffey [1]. Therefore, those 12 elementary balanced
arrays constitute a subset of currently identified 54 1somorphic classes. In addition, four new balanced arrays
of 34-hills are constructed on triangular lattice and three of them are partially self-buildable. Another set of
93 balanced designs 1s 1identified contaming 46-hills. A new family of designs balanced for first- and second-
order neighbours is identified. These designs are eligible to find both the first- and second- order effect.
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INTRODUCTION
Intercropping has received increased attention
because it offers potential advantages for resource
utilization, inputs and
sustainability in crop production Andersen et al [3].

decreased increased
It 18 mportant to differentiate between mtercropping
and competition because they differ on the basis of
objectives behind them. In intercropping, the objective
is to find the best technique to grow in mixture, however,
m competition, the mechanism of competition 1s
mvestigated e.g. how a genotype or a specie m a
mixture tolerate the other or provide competition
benefit to the other Mead and Riley [4]. If the lack of
resources limits the growth of an individual then that
mdividual has suffered from competiion Stoll and
Weiner [5]. Although the definition of competition
has been debated from time to time (e. g. Milne [6];
Thompson [7]; Keddy [8]; and Stoll and Wemer [5]),
for most plant ecologists, the core elements that
define competition have never nearly departed from
one of the earliest published definitions: "Competition
occurs where two or more plants make demands for
light, nutrients or water m excess of the supply" Weaver
and Clements, [9]. According to Bulson et al [10]

components of a mixture use limiting resources more
efficiently than pure stands. Better biological efficiency of
mixtures compared with monocultures may result from
differences in growing cycles and root and root
architecture Wilson, [11]; Ponce, [12]; Aufhammer et al.
[13] and Vandermeer, [14]. This phenomenon has been
observed in small grains when one component of a
mixture is less susceptible to lodging and provides
support for the second component Sobkowicz [15].
Sobkowicz and Tendziagolska [16]
productivity
compares two different approaches used i plant

assesses the
of mixtures of oats and wheat and
competition studies such as replacement designs and
in additive designs.

While growing mixtures it is worth investigating how
a plant of one variety will perform when surrounded by
0, 1, 2, numbers of immediate neighbouring plants of
another variety. Consider a competition experiment
utilizing a fifty-fifty mixture of two varieties planted on a
triangular lattice. In such an arrangement a plant of one
variety could be immediately surrounded by 0, 1, 2, 3, 4, 5
or 6 plants of the other variety thus providing seven
levels of competition. It would be desirable to have such
a design so that all levels of competition for both varieties
appear equally often.
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The first real attempt was made by Martin [17] to
construct balanced hexagonal designs. These designs
were the key motivation in developing balanced
designs on regular lattices. Thus, 1t laid a foundation of
competition designs for two varieties on both triangular
and square lattices. Martin’s designs are called leveled
beehives but those are not balanced. The advantage of
using triangular lattice over square lattice is that planting
on triangular lattice together with the honeycombing
property of the implied hexagons which leads to layouts
requiring less area for same plant density and having more
scope than the designs for the same purpose on a square
lattice (Veevers and Boffey, [18]). They extended leveled
beehives and also constructed these for r=8. Veevers
and Boffey [1] gave a class of symmetric designs on a
triangle lattice. They introduced
constructing balanced designs of arbitrary size from

a method for

elementary balanced arrays. They listed 12 designs
possessing  vertically self-building property. It 1s
noticed that if any of the self-building elementary arrays
15 overlapped on its right hand four hills by the left
had four hills of the reverse of a copy of itself then a
double

concluded

length  balanced array is produced It i1s

that these cannot be self-buildable
horizontally and consequently are of limited use. Zafar-
Yab [2] reproduced 12 fundamental generators developed
by Veevers and Boffey [1] and confirmed their results.
Since these designs oceur 1 pairs- fundamental generator
and associate partner, therefore, we need to know only six

of these.

Construction of 34 Hills First Order Triangular
Balanced Deigns: In investigation of self-buildable
designs, let us consider an arrangement of 34 hill plots.
This arrangement (balanced arrays in complementary
halves) of hills contains & similar hills in the first and the
last rows and 9 hills each in the second and the third
rows. The numbers of possibilities to be investigated are
2" When one of the arbitrary varieties from 0 and 1 is
fixed, say variety 0, at the left most ull of the second row
it cuts down the possibilities to half. Each elementary
balanced array 1s identified by N. There are only four
1somorphic classes that are presented in Table 2. 1.

None of these arrays posses self-buildability in both
directions. However, three of them with array mumbers 1,
2 and 4 can said to be partially self-buildable. Tn these
arrays the last lull of each row 13 the complement of the
first hill in the respective row. Therefore, these are only
partially self-buildable.

Buildable Arraysin Complementary Halves of Moderate
Size: This arrangement of hills comprises 43 lalls
arranged in 5 rows. In such an arrangement the first and
the last rows contain eight similar hills each. Wlule the
second, the third and the fourth rows consist of nine hills
each. Following the search procedure described earlier
54 arrays are identified possessing balance in
complementary halves and are presented in the Table 2. 2
1n octal representations.

When two copies of any elementary balanced array
constructed by Veevers and Boffey [1] are stacked by
overlapping its last row and augmenting by suitable
variety the overlapped row, on its right produces one of
the 12 currently identified vertically self-buildable arrays.
Consequently 54 arrays in Table 2. 2 must contain those
12 vertical buildable elementary balanced arrays of
Veevers and Boffey [1]. Array numbers of these 12
elementary balanced arrays are presented as bold face for
differentiation in Table 2. 2.

Further more, array numbers 12, 22 and 31 are
vertically buildable but only for a single copy of the
elementary balanced array. As an example consider array
number N=31.

Rotate the elementary balanced array downward
about the fifth row. By adding a suitable variety at the
boxed ill (here 1), it can be verified that the array 1s
balanced for nine rows. The array is shown i the binary
form in the Fig. 2. 1. Smce the array 18 constructed in
complimentary halves, therefore basic balanced design
can be obtained by placing elementary balanced array and
1t complement side by side. However, only elementary half
is shown in Fig. 2. 1.

Construction of 46 Hills First Order Balanced Arrays on
Triangular Lattice: To construct lager arrays possessing
self-buildable property, elementary arrays are considered
in complementary halves containing three rows. In such
arrays, the first and the third rows contain 15 hills each
and the second row contains 16 hills. There are 2”'
possibilities to be investigated. Arbitrary selection of one
variety on a particular hill cuts down the explicit
consideration to half. Let there be a 0 fixed at the first hill
of the second row then there are 62085 isomorphism
classes. Unfortunately none of these arrays possesses
vertically and nfmitely self-buildability property. Among
these 61992 arrays which leads to the same number of
balanced designs when the two complementary halves are
used in an experiment. Such designs can be used in an
experiment where only two replications are sufficient.
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Table 2.1: Cctal representation of first three rows of 34-hills balanced array s

Elementary array
 E5
1 3 25 53
z T 25 53
3 14 22 44
4 17 25 53

Tahle 2. 2: Octal representation of first four rows of 43-hills balanced arays containing five rows

Elementary Array Elementary Array Elementary Array
M 1 N
1 1 4 22 255 2 1 5 22 254 3 1 214 22 214
4 1 260 102 260 5 1 304 102 304 ] 1 32 102 320
7 3 4 26 255 8 3 5 26 251 9 3 5 26 254
10 3 211 26 215 11 3 214 26 214 12 1a 206 21 207
13 1a 206 22 206 14 1a 207 21 207 15 11 204 26 204
] 11 204 26 205 17 11 204 32 204 18 13 204 26 204
19 14 202 31 203 20 14 202 31 206 2 14 204 32 208
22 15 204 22 205 23 15 204 32 204 24 16 203 35 203
25 17 204 26 204 26 17 204 32 204 27 17 227 136 247
28 17 274 136 274 29 36 357 75 357 30 36 373 75 373
3l 40 204 101 207 3z 40 208 102 204 33 40 207 101 207
34 41 260 102 260 35 41 320 10z 320 36 57 274 136 274
37 a0 200 140 312 38 a0 202 141 203 39 a0 202 141 302
40 60 212 140 300 41 74 236 172 236 42 74 336 172 336
43 74 366 172 366 44 75 364 172 364 45 76 217 175 217
44 77 225 137 337 47 77 234 136 234 48 77 234 172 234
49 T 235 136 335 50 77 237 137 325 51 77 267 136 327
52 TF 334 172 334 53 77 364 172 364 54 141 204 102 205
/ n o0 1 0 o 0 0 3\
0 1. & 0o B @ 1 1 0 \
\
0 0 1 0 0 0 0 1 N
\\\ ¢ 2% 0 0 @ 1 ¢ 3 /
VAR 0 0 0 Q(
o L
¥ 0 1 @9 0 0 ® 1 1 | \
{ 0o 0 1 0 o 0 0 1

Fig 2.1: Extension of 5-row balancedin to 9-row balanced array

The remaining 93 elementary balanced arrays are balanced
designs in their own right having one replication each
of the seven levels of competition for each variety.
However, in any experiment it is still advisable to use
both complementary halves so as to eliminate any
selection bias and such use will generate two replications
of the experiment. Since these 93 designs have similar
hills in the first and the last rows so the octal
representation of the first two rows is given in Table 2. 3.

Construction of Second Order Triangular Balanced
Arrays: Veevers and Boffey [1] gave the class of
symmetric balanced elementary arrays with respect
first order nearest neighbours, having 50-50 mixture
for friangular lattice. Basic
balanced designs can be obtained by placing
elementary array and its complement side by side
The designs consist of monoculture columns in their
planting keys.

two wvarieties on a
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Table 2. 3: Octal representation of the first two rows containing 15 and 16 hills respectively

N Elementary Array N Elementary Array N Elementary Array
1 00676 013217 32 03436 014257 63 07034 010557
2 00736 013057 33 03474 012563 64 07034 010573
3 00756 013643 34 03474 013523 65 07074 012563
4 00766 013613 35 03570 010753 66 07074 016523
5 01374 012723 36 03570 011273 67 07170 012473
6 01476 012617 37 03570 011353 68 07170 016453
7 01574 012353 38 03570 012273 69 07360 012713
8 01574 012743 39 03570 012353 70 07360 016513
9 01636 012157 40 03570 012473 71 07416 013643
10 01636 012173 41 03570 013453 72 07434 012273
11 01674 012563 42 03616 017243 73 07434 013513
12 01674 013523 43 03634 011273 T4 07434 013523
13 01716 012743 4 03634 011653 75 07434 016253
14 01734 012473 45 03670 011273 76 07434 016513
15 01734 012713 46 03670 011653 77 07434 016523
16 01734 012723 47 03706 010753 78 07470 012273
17 01734 012743 48 03706 017053 79 07470 016253
18 01734 013453 49 03714 012723 80 07560 012353
19 01734 013513 50 03730 010753 81 07560 013453
20 01734 013523 51 03730 012713 82 07560 013513
21 01754 013523 52 03744 011353 83 07560 013613
22 01764 013513 53 03750 011353 84 07560 016253
23 01770 013507 54 03760 010567 85 07560 016453
24 02374 012723 55 04374 012723 86 07560 016513
25 02770 012273 56 04770 012273 87 07614 016523
26 03076 015217 57 05760 013513 88 07630 016513
27 03174 011353 58 06076 013217 89 07660 016513
28 03370 011273 59 06174 011353 90 07704 016453
29 03436 010557 60 06370 011273 91 07710 016453
30 03436 010573 61 06760 011653 92 07720 016453
31 03436 010657 62 06760 013613 93 07740 016427

Table 2. 4: Octal representation of the first four rows containing 43-hills

N Elementary array N Elementary array N Elementary array

1 000 0007 305 0417 2 000 0007 705 1017 3 000 0017 305 0407
4 000 0017 705 1007 5 000 0026 257 0236 6 000 0036 257 0226
7 000 0101 270 1141 8 000 0141 2701101 9 001 0006 305 0416

For example consider elementary array number N=1.

On a triangle lattice a plant has six nearest (first order)
neighbours at a distance d and the next six nearest
neighbours at a distance 443 (second order). The plants
at different distances from the central plant are likely to
produce different effects. In the construction of first order
elementary balanced arrays, it is assumed that the effect
of second and higher order neighbours 1s negligible but
it 15 possible only if plants are not planted mn close
proximity. However, for plantation at close proximity it
seems unnatural to ignore second order neighbours, as
they are not too far away to be neglected. Thus a need to
develop designs, that are balanced with respect to both
first as well as second order opposite neighbours
separately. The aim is to find weather the second- order
neighbours have significant effect on the interior-tull plot.

The term second order balanced arrays in  this study
stands for balanced arrays with respect to both first- as
well as second-order nearest neighbours separately.
There are 10 and 14 levels of competition on a square
lattice and triangular lattice respectively.

The smallest possible arrangement of hills necessary
for second order balanced arrays in complementary
halves 1s shown in Fig. 2. 2. In such an arrangement there
are 7 similar hills in the first and the last row and there are
10, 9 and 10 hills in the second, third and fourth row
respectively. This concept is explained with the help of
Fig. 2. 2.

Consider the internal hexagon in Fig. 2.2 the test-hill
enclosed in the circle is surrounded by six hills lying
on its perimeter. Each ata distance d are the first order

1391



World Appl. Seci. 7, 7 (11): 1382-1387, 2009

+ + +
S \.,\
-~
®” F—% \'* B
| fx \\ :
|
| ® o o%
I \ / I
* | J* £
"\. ’_r"
R T 2

* ® *

* * + & e
+ * € +

+ L L L L
* * *

Fig. 2.2: Arrangement of 43 hill plots each hill is represented by a star (*), the internal hills in the third row are test-hills
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Fig. 2.3: The internal hills of the third row are test-hills, the first and second elements are the numbers of first and second

order opposite neighbours

nearest neighbours. The next six hills lying on the
perimeter of the external hexagon, are at a distance 4.3
from the test-hill and are second order nearest
neighbours. There are 2* possible configurations, which
are large in number to be considered. Following the
procedure described earlier, the first hill in the second
row ig assigned variety 0. The layout of the array
advocates that such arrays can not have self-buildability
property. The reason for selecting this layout iz the
limitation of computer’s ability to calculate such
huge amount. There are 2152 second order balance
arrays. These arrays have similar the first and the last
rows, therefore four rows of binary digits converted
to octal base determine the array. We do not suggest
a way to clagsify these into groups because all
are non-buildable in both horizontal and vertical
directions. Therefore, only nine of these are presented in
Table 2.4. However, the complete list of those 2152
elementary balanced arrays can be obtained from authors

on request.
The first and the second elements in the
subscript of testable hills are numbers of first and

second order opposite neighbours respectively. Their
respective configurations are {4, 5, 1, 0, 2, 3, 6) and
(6,5,0,1, 2, 4,3). It can be seen that the array in Fig. 2. 3
ig balanced for both the first and second-order

opposite neighbours separately. The test ratio of
these arraysis 16. 28%. Although this test ratio is very
small yet it gives the opportunity to the experimenter to
perform the experiment in the presence of second order
neighbour effect.

Remarks: All the first order designs in the literature
are constructed ignoring the effect of second and
higher order effects but if the plants are at close proximity
it seem unnatural fo ignore the effect of second order
neighbours. In the present study this problem is
addressed and second order balanced designs are
developed.
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