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Abstract: In this paper the exact solution of Infinite Boundary Integral Equation (IBIE) on (−∞, ∞) of the 
second kind with degenerate kernel is presented. Moreover Galerkin method with Laguerre polynomial is 
applied to get the approximate solution of IBIE. Nu merical examples are given to show the validity of the 
method presented.
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INTRODUCTION

Projection method has been applying for a long 
time and its general abstract treatment goes back to the 
fundamental theory of Kantorovich [6]. Kantorovich 
gave a general schema for defining and analyzing the 
projection method to solve the linear operator equations.

The detail of the method is given in [7]. Elliott 
[4], collocation method based on the Chebyshev
polynomials and Chebyshev expansions is applied to 
solve the numerical solution of Fredholm Integral
Equation (FIE) and this often leads to the linear system 
of algebraic equations.
To solve approximately the integral equation

D
g(s) f(s) k(s,t)g(t)dt, s D= + λ ∈∫ (1)

we usually choose a finite dimensional family of 
function that is believed to contain a function gn (s)
close to true solution g (s). The desired approximate 
solution gn (s) is selected by forcing it  to satisfy the 
equation (1). There are various means in which gn (s)
can be said to satisfy equation (1) approximately and
this leads to different type of methods. The most
popular and powerful tools are collocation and Galerkin 
method [2].

g(s) f(s) k(s,t)g(t)dt
∞

−∞
= + λ∫ (2)

Many problems of electromagnetics, scattering
problems, boundary integral equations [12-14] leads to 
infinite boundary integral equation of the second 
kind where f (s) is continuous function and the kernel 

k (s, t) might has singularity in the region D = {(s, t): 
-∞<s, t<∞} and g(s) is to be determined.

The theory of singular integral equations in which 
the integration contour of (2) is smooth, closed or open 
curve of finite length and the kernel has strong
singularity, have been comprehensively developed by 
Gakhov and Muskhelishvili [5,10]. Many researchers 
have developed the approximate method to solve
integral equation (2) when the limit of integration is 
finite [1, 3, 8, 9, 11] and literature cited therein. But for 
IBIE, few works have been done [13-14].

In this paper we develop Galerkin method with 
Laguerre polynomials to solve IBIE (2). Since Laguerre 
polynomials are orthogonal with weight function
w(x) = exp (-x) on the interval (0, ∞) it good fits the 
density function g (s). The details of the method is 
given in section 2. The exact solution for degenerate 
kernel k(s, t) is outlined in section 3. Finally, some 
numerical examples for different kernel k(s, t) and f (t)
are presented in section 4.

GALERKIN METHOD

Consider Laguerre base functions as:

{ }0 1 nL (s),L(s), ,L (s)

Where
mn

m
0 n

m 0

n( 1)
L (s) 1, L (s) s

mm!=

 −
= =  

 
∑

with the following properties

( ) s
m n m n0

L (s),L (s) e L (s)L (s)ds 0 ,m n
∞ −= = ≠∫

And
mL (s) 1, m 0,1,2,= = 
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By taking the linear combination of Laguerre
polynomials

n

n j j
j 0

g (s) c L ( s )
=

=∑ (3)

and substituting into (2), yields

n n

j j j j
j 0 j 0

c L ( s ) f(s) k(s,t)( cL(t))dt
∞

−∞= =

= + λ∑ ∑∫
Then

( )
n n

j j j j j0
j 0 j 0

c L ( s ) f(s) c k(s, t ) L ( t) k(s, t)L(t)dt
∞

= =

= + λ − − +∑ ∑ ∫ (4)

Let

j j j0
h ( s ) (k(s, t )L( t) k(s,t)L(t))dt

∞
= − − +∫

equation (4) can be written as

( )
n

j j j
j 0

c L (s ) h (s) f(s)
=

− λ =∑ (5)

Multiplying (5) by Li(s), we obtain

( ) ( )
n

j j j i i
j 0

c L (s ) h (s),L(s) f(s),L(s)
=

− λ =∑ (6)

where (a, b) is the inner product of a and b.
Using orthogonolity condition the equation (6) can 

be written as

( ) ( )
n

i j j i i
j 0

c c h (s),L(s) f(s),L(s) , i 0,1, ,n
=

− λ = =∑  (7)

Where

( ) ( ) ( )
( ) ( ) ( )

( ) ( ) ( )

0 0 1 0 n 0

0 1 1 1 n 1

0 n 1 n n n

1 h (s),L (s) h (s),L (s) h (s),L (s)
h (s),L(s) 1 h (s),L(s) h (s),L(s)

D( )

h (s),L (s) h (s),L (s) 1 h (s),L (s)

− λ −λ −λ
−λ −λ −λ

λ =

−λ −λ −λ





   



The system of equation (7) has unique solution if λ
is not eigenvalues.

EXACT SOLUTION FOR THE 
DEGENERATE KERNEL

Let 1 2k(s,t) p(s )p( t )= then the equation (2) becomes

1 2g(s) f(s) p(s) p (t)g(t)dt
∞

−∞
= + λ ∫

Denoting the integral on the right side of (8) by c

2c p(t)g(t)dt
∞

−∞
= ∫ (9)

we get
1g(s) f(s) cp(s)= + λ (10)

Substitution (10) into (9) gives

2

1 2

p(t)f(t)dt
c

1 p(t )p (t)dt

∞

−∞
∞

−∞

=
− λ

∫
∫

(11)

From (11) and (10) we obtain

1 2

1 2

p ( s ) p(t)f(t)dt
g(s) f(s)

1 p(t )p(t )dt

∞

−∞
∞

−∞

= +
− λ

∫
∫

Where 1 2
1

p(t )p( t )d t
∞

−∞
≠
λ∫ .

NUMERICAL EXAMPLE

Examples 1: Let λ = 1/3 and

2t sk(s,t) e , f ( s) 2s− −= =

Due to (12) the exact solution of (2) is g(s) = 2s.
For fixed λ = 1/3, the system of equation (7) has 
unique solution and numerical results are shown in
Fig. 1 for n = 6.

Fig. 1: For n = 6
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 Fig. 2: For n = 6

 Fig. 3: For n = 5 
Example 2: Let λ= -1 and

2
)exp()(,),(

212
222 Π−

++== −− ssssfetsk st

Due to (12) the exact solution of (2) is g (s) = s2+s
For fixed λ = -1, the system of equation (7) has unique 
solution and numerical results are shown in Fig. 2 
for n = 6.

Example 3: Let λ = 2 and

2 2t s 5k(s,t) e , f( s) 3s 6s− −= = −

Since the kernel k (s, t) is a degenerate kernel 
from (12) it follows that g (s) = 3s2 - 6s. For n = 5, the 
results are shown in Fig. 3
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