
World Applied Sciences Journal 7 (1): 94-101, 2009
ISSN 1818-4952
© IDOSI Publications, 2009

Corresponding Author: Dr. S. Yousef, Department of Structural Engineering, Faculty of Engineering, Ain Shams University, 
Cairo, Egypt

94

Geometric Programming Problems with Fuzzy Parameters 
and its Application to Crane Load Sway

1S. Yousef, 2N. Badra and 3T.G. Abu-El Yazied

1Department of Structural Engineering, Faculty of Engineering, Ain Shams University, Cairo, Egypt
2Department of Engineering Mathematics, Faculty of Engineering, Ain Shams University, Cairo, Egypt

3College of Technological Studies, PAAET, Kuwait, On Leave from Ain Shams University, Egypt

Abstract: In this work an approach is proposed to solve geometric programming problems under 
uncertainty. The proposed approach derives the lower and upper bounds of the objective of geometric 
programming problems with fuzzy parameters. A pair of two-level mathematical programs is formulated to 
calculate the lower and upper bounds of the objective value. The solution is in a range. Two illustrative 
examples are presented to clarify the proposed approach. The problem of suppressing the crane load sway 
has been also considered as a practical application to illustrate the effectiveness of the proposed approach. 
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INTRODUCTION

Geometric programming provides a methodology 
for solving nonlinear optimization problems where
nonlinear relations can be presented by exponential
function. In most practical applications, the possible 
values of the model parameters are provided by fuzzy 
data. Several engineering applications [1-7] have
investigated the effectiveness and importance of
geometric programming. Effective algorithms have
been developed for solving geometric programming
problems [8-11]. In geometric programming, the
parameters in the problem are not allowed to vary 
simultaneously while calculating the bounds of the
objective value. Many applications of geometric
programming are engineering problems in which some 
of the parameters are estimates of the actual values 
[12]. A solution procedure for solving posynomial
geometric programming with parametric uncertainty
has been also introduced [13]. The parameters are
represented by ranges and the derived results are also 
represented by ranges. 

This paper presents an approach for solving
nonlinear optimization problems under uncertainty. The 
proposed approach derives the lower and upper bounds 
of the objective of geometric programming problems 
with fuzzy parameters. The parameters are represented 
by triangular fuzzy numbers. A pair of two-level
mathematical programs is formulated to calculate the 
lower and upper bounds of the objective value. The
solution is in a range. Two illustrative examples are 
presented to clarify the proposed approach. 

The problem of suppressing the crane load sway is 
also considered as a practical application of present 
approach. Our approach implements fuzzy partition to
the state variables of the load sway based on Lyapunov 
synthesis. So that, the resulting control law is stable and 
able to exploit the dynamic variables of the system in a 
linguistic manner. The proposed method enables the 
designer to systematically derive the rule base of the 
control. The numerical simulation illustrates the
effectiveness of the proposed approach. 

GEOMETRIC PROGRAMMING PROBLEM

The geometric programming problem with fuzzy 
parameters (FGPP) can be formulated as follows:
(FGPP):
                              Min (Z = C X0) (1)
Subject to
                                     AX1≤b (2)

                                       X>0 (3)
Where
X is a column vector of n dimensional representing 

the decision variables,
Xo is a column vector of so dimensional representing 

terms of the objective function,
X1 is a column vector of sm dimensional representing 

terms of the m constraints,
C is a row vector of so dimensional representing 

objective function coefficients,
A is a matrix of m x sm dimensional representing 

constraints coefficients,
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b is a column vector of sm dimensional of positive 
numbers representing right-hand sides of the
constraints.

FUZZY APPROACH FOR GEOMETRIC 
PROGRAMMING PROBLEM

The objective function coefficients may be
represented in triangular fuzzy numbers. Furthermore, 
the constraints coefficients and the right-hand sides of 
the constraints may also be represented in triangular 
fuzzy numbers. This means that:

L m U L m U
to to to to it it it it

L m U
t t t t o o m

C C , C , C , a a , a , a

b b , b , b ,t 1,2,...,s , t=1,2,...,s

 i= 1,2,...,m

   = =       
 = =    



(4)

The major difficulty lies on how to deal with fuzzy 
numbers in the objective function and the constraints. 
Let

{

( ) ( )
( ) ( )
( ) ( )

}
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L m L U U m
to to to to to to to

L m L U U m
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L m L U U m
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a a a a a a a
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
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

(5)

For each ( )to it tc , a , b  T ∈   the value Z (c to, a it,

b t)  is  denoted  by  the  objective  value  of  the Model 
(1-3). Let Z L and Z U be the minimum and maximum of 
Z( c to, a it, b t) on T, respectively as follows:

( ) ( )
( ) ( )

L
to it t to it t

L
to it t to it t

Z Min{Z c ,a ,b c ,a , b T }

  Z Max{Z c ,a ,b c ,a , b T } 

= ∈ 

= ∈ 

    

    
(6)

which can  be  reformulated  as  the following pair of 
two-level mathematical problems:

L    Min  C XMin ox(  ,  ,  )   Tc a bto it t
z =

∈ 

Subject to
                                      A X1≤b (7a)

X>0

U    Min  C XMax ox(  ,  ,  )   Tc a bto it t
z =

∈ 

Subject to
                                     A X 1 ≤ b (7b)

X>0

In Model (7) the right–hand side value b may not 
be equal to the constant value 1. In this case, the 
constraint coefficients A can be divided by the right –
hand side value b for every constraint i, thus, the 
following standard geometric programming problems 
will be as follows:

L    Min  C XMin ox(  ,  ,  )   Tc a bto it t
z =

∈ 

Subject to
                                      A1X1≤I (8a)

X>0

U    Min  C XMax ox(  ,  ,  )   Tc a bto it t
z =

∈ 

Subject to
                                      A1X1≤I (8b)

X>0

where, I is a column vector of s m dimensional of 
identity numbers representing right-hand sides of the 
constraints.

Model (8-a) is to derive the lower bound of the 
objective value of the Model. The minimum value can 
be obtained by setting all C to their lower bounds in the 
objective function. Moreover, since the values of the 
right-hand sides are the identity values, the lower the 
ratio of it ta / b in constraints, the larger the feasible 
region is. Thus, the value of ita  must be set to its lower 

bound and tb  to its upper bound for every i and t. The 
Model (8-a) can be transformed to the following fuzzy 
primal geometric programming problem (FPGPP) as
follows: (FPGPP):

( )o nL L m L tj
to to to j

 x t 1 j 1

s
Z C C C xMin

β

= =

 = + α −  ∑ ∏

Subject to

( ) ( )o m

o

1L m L U U m
it it it i i i

t 1

n tj
j

j 1

j

s s
a +  a  - a b - b b

s

x 1,2,...,m

0  1, x > 0,   j=1,2,...,n

+ −

= +

β

=

   α α −   
   

× ≤

≤ α ≤

∏

∏ (9)
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The solution techniques for geometric
programming  problem  may  be  treated  as  either 
primal-based algorithms that solve the nonlinear primal 
problems at different cuts α, or dual-based algorithms
that solve the equivalent linear dual problems at also at 
different cuts α.

Beightler and Phillips [12] and Duffin et al. [14], 
the Model (9) can be transformed to the corresponding 
fuzzy dual geometric programming problem (FDGPP)
as follows:
(FDGPP):

( )

( )( ) ( )( )o m

o
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i 1 t s 1
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Subject to
o m
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m

tj t
j 1t 1

t
t 1

s s
 y  =0

s
s

y =1

+

= = +

=

β∏ ∏

∑

0=α=1, yt=0, t =1,2,…, so+sm (10)

Model (10) is to find a stationary point of
Lagrangian function for a concave objective function 
subject to a set of convex constraints. Model (10) has a 
unique stationary point of Lagrangian function – a 
global maximum [12, 14]. Thus, the lower bound of the 
objective value of the Model can be obtained. 

Model (8-b) is to derive the upper bound of the 
objective value of the Model. The maximum value can 
be obtained by setting all C to their upper bounds in the 
objective function. Moreover, since the values of the 
right-hand sides are the identity values, the upper the 
ratio of it ta / b in constraints, the larger the feasible 
region is. Thus, the value of ita  must be set to its upper

bound and tb  to its lower bound for every i and t. The 
Model (8-b) can be transformed to the following fuzzy 
primal geometric programming problem (FPGPP) as
follows:
(FPGPP):

( )oU

 x

Z
nU U m tj

to to to j
t 1 j 1

s
C C C xMin=
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                     i = 1,2,…,m, 0 = α = 1, x j > 0,
                     j = 1,2,…,n (11)

The solution techniques for geometric
programming problem may be treated as either primal-
based algorithms that solve the nonlinear primal
problems at different cuts α, or dual-based algorithms 
that solve the equivalent linear dual problems at also at 
different cuts α.

Model (11) can be transformed to the
corresponding fuzzy dual geometric programming
problem (FDGPP) as follows:
(FDGPP):
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0=α=1, yt=0, t =1,2,…, s0+sm (12)

Model (12) is to find a stationary point of
Lagrangian function for a concave objective function 
subject to a set of convex constraints. Model (12) has a 
unique stationary point of Lagrangian function – a 
global maximum [12, 14]. Thus, the upper bound of the 
objective value of the Model can be obtained. 

The lower bound Z L and upper bound Z U of the 
objective value are solved from Models (10) and (12), 
respectively. In this paper, the fuzzy parameters in the 
problem are allowed to vary simultaneously.

ILLUSTRATIVE EXAMPLES

Two geometric programming problems are
presented in this paper to illustrate the proposed fuzzy 
approach.

Illustrative Example 1: Consider the fuzzy geometric 
programming problem (FGPP1) as follows:
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Table 1: Results of fuzzy optimization for the lower bound objective function of Example 1
α Z L y 1 y 2 y 3 y 4 y 5 y 6

0 0.2050 0.9951 0.0049 16.3121 32.3677 4.8388 0.0316
0.1 0.2346 0.9939 0.0061 13.9775 27.6141 4.2137 0.0348
0.2 0.2685 0.9924 0.0077 11.9750 23.9633 3.7014 0.0381
0.3 0.3072 0.9905 0.0095 10.2503 20.4937 3.2245 0.0418
0.4 0.3517 0.9880 0.0120 8.7730 17.2864 2.7895 0.0457
0.5 0.4029 0.9852 0.0148 7.5069 14.9123 2.4393 0.0497
0.6 0.4620 0.9815 0.0185 6.4113 12.6588 2.1126 0.0539
0.7 0.5309 0.9771 0.0230 5.4632 10.7332 1.8250 0.0584
0.8 0.6115 0.9716 0.0285 4.6434 9.1085 1.5741 0.0627
0.9 0.7067 0.9648 0.0352 3.9325 7.6651 1.3475 0.0673
1.0 0.8202 0.9566 0.0434 3.3174 6.4325 1.1473 0.0717

(FGPP1): ( )(1) (1)
oMin Z C X= (13)

Subject to (1) (1)
1 1A X  b≤ (14)

                                         X(1)>0 (15)

where ( ) ( )(1)C 6,8,10  8,10,12=    ,

t(1) -1 2 -2 3 -2 2
o 1 2 3 4 1 2 3X x  x  x  x    x  x  x =   

(1) (6,8,10) 1 0 0
A

0 0 (3,5,7) 1
 
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 

,

t(1) 3 -1 -2 -1 2 2
1 1 3 1 3 2 3 4 1 2 4X x x   x x  x x x  x x x =   

(1) (5,8,10)
b

1
 

=  
 

, [ ](1) t
1 2 3 4X x  x  x  x=

where (6,8,10) and (8,10,12) represent the triangular
fuzzy numbers of the coefficient in the objective
function, (6,8,10) represent the triangular fuzzy
numbers of constraints and (5,8,10) represents the
triangular fuzzy number of the right-hand side
constraints. In this example, s0=2 and sm=4.

According to Models (10) and (12), the problem
can be transformed to the following pair of geometric 
programming problems:
(FDGPP1):

yy y 31 2 (5 2 )( )y y6 2 8 2 3 4LZ = Max y y (10 2 ) y1 2 3        y
y yy 5 64 (3 2 ) )y y y y (y y3 4 5 6 5 6

(10 2 )  y  y y4 5 6
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Subject to:
                                     C(1) Y(1) = B(1)

                                   yt=0, t =1,2,…,6 (16)
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1
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Results of fuzzy optimization for the lower bound 
of the geometric programming problem at different 
values of α are given in Table 1.
(FDGPP1):
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Table 2: Results of fuzzy optimization for the upper bound objective function of Example 1

α Z U y 1 y 2 y 3 y 4 Y 5 y 6

0 27.098 0.5634 0.4366 0.0666 0.1180 0.0118 0.0251
0.1 14.953 0.6216 0.3784 0.1274 0.2272 0.0283 0.0386
0.2 8.9117 0.6814 0.3186 0.2249 0.4035 0.0589 0.0534
0.3 5.6958 0.7389 0.2611 0.3684 0.6677 0.1086 0.0669
0.4 3.8683 0.7908 0.2092 0.5665 1.0363 0.1811 0.0775
0.5 2.7638 0.8355 0.1645 0.8254 1.5263 0.2779 0.0840
0.6 2.0575 0.8725 0.1276 1.1512 2.1542 0.3996 0.0864
0.7 1.5824 0.9018 0.0982 1.5528 2.9342 0.5466 0.0855
0.8 1.2483 0.9250 0.0750 2.0380 3.8905 0.7191 0.0822
0.9 1.0042 0.9429 0.0572 2.6204 5.0456 0.9183 0.0773
1.0 0.8202 0.9566 0.0434 3.3174 6.4325 1.1473 0.0717

Fig. 2: Simplified Crane Model, Container Mass: M = 100 Kg., Trolley Mass m = 300 Kg
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Fig. 1: Lower and upper objective values at different 
values of α for Example 1

Results of fuzzy optimization for the upper bound of 
the geometric programming problem at different values 
of α are given in Table 2.

Figure 1 shows the lower and upper bounds of the 
objective values for the geometric programming 
problem at different values of α of Example 1.

Illustrative example 2: Fuzzy approach to suppress 
crane   load   sway: The  crane  model  is  illustrated 
in the Fig. 2. A fuzzy synthesis is applied to the design 
of  a  controller  using the Lyapunov direct method. 
Since  extracting  knowledge, in many cases, is a
tedious  task,  the  basic  physical  information  about
the system is assumed according to previous work [15]. 
The details of model equations can be found in
Appendix A.

m

M g

F1Z(t)z
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Fig. 3: The time response of the payload transverse displacement

Assuming the wire rope length is constant "l=6m"
and the girder is stationary "ν=0", the equations of 
motion, according to Appendix, can be reduced to;

1 1(M m)u Mlcos F+ + θ θ = (18)

2
1 1 1(Mlcos )u Ml Mglsin 0θ + θ + θ = (19)

As shown in Fig. 2, the crane sway can be
represented by two angles; the angle between the wire 
rope and the vertical θ1 and the angle rope twist in the 
horizontal plane θ2. According to Appendix A, the
analysis will be restricted to the angle θ1 because θ2 is 
not controllable [15, 16]. However, θ2 will be decreased 
if the first state “x1=θ1” is suppressed [15, 16].

Hence, the analysis will consider only x1=θ1 and 
2 1x =θ . Regarding the controlling force, “F” it has two 

components; the nominal force component “F0” which 
has to overcome the inertia forces and “δF” [15] which
is determined using the fuzzy controller, i.e. F = F0+δF.

During each phase of the crane motion, the
objective of δF is to minimize the load swing around 
the corresponding nominal position. Therefore, the
control force component δF is proportional to 2 1x =θ

only.
The second method of Lyapunov is the most

general for determining the stability of a nonlinear
and/or time-varying system of any order. This method 
will be implemented to stabilize the control scheme and 
to extract the fuzzy rules. The following Lyapunov 
geometric function candidate;

1 2 2L(x ,x ) (x x )1 2 1 22
= + (20)

Table 3: Fuzzy partition of x1, x2 and δF

x1 x2 δF

+ + +
- - -

+ - 0
- + 0

Differentiating with respect to time gives;

L x x x x1 1 2 2= +   (21)

In order to achieve the asymptotic stability, the 
required necessary condition is to find δF(x1, x2) so that

L x x x x 01 2 2 2= + <  (22)

in some neighborhood of the equilibrium of the
Lyapunov function. Sufficient conditions for the above 
stability condition can be stated as follows:

If x1 and x2 have opposite signs and 2x  is zero, the 
stability condition holds;

If x1 and x2 are both positive, the stability condition 
will hold if 2 1x x< − ; and 

If x1 and x2 are both negative, the stability
condition will hold if 2 1x x> − .

Using the observations and our knoweledge that δF
is proportional to 2x , the following logic rules can be 
obtained Table 3;

These rules are simply the fuzzy partition of x1, x2

and δF which follow directly from the stabilizing
condition of the Lyapunov function. Each rule
represents   the   model   characteristic   in   an  operting 
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region. The models are linked together by the fuzzy 
membership functions to form a global model.

Using the data of the considered crane, with a
transportation plane of 0.1 m/sec2 acceleration for 3 
seconds, constant velocity of 0.3 m/sec and finally 
constant deceleration of 0.1 m/sec2 for the last 3
seconds, the load sway angle can be obtained. Fig. 3 
illustrates a simulation example that the load sway has 
been suppressed by appling the proposed scheme.

CONCLUSION

In  geometric  programming,  the  possible  values
of the parameters required in the modeling of the
problem  are  provided  by  either fuzzy or crisp data. 
This paper presents an approach for solving geometric 
programming problems under uncertainty. The
proposed approach derives the lower and upper bounds
of the objective of geometric programming problems 
with fuzzy parameters. The parameters are represented 
by triangular fuzzy numbers. A pair of two-level
mathematical programs is formulated to calculate the 
lower and upper bounds of the objective value. The 
solution is in a range. Two illustrative examples are 
presented to clarify the proposed approach. The
problem of suppressing the load sway of cranes is also 
considered as a practical application to illustrate the 
effectiveness of the present approach.

Appendix A
The equations of motion for the different

coordinates "u,v,l, θ1,θ2" can be written as follows [15];

1 2 1 1

1 1 2 1 2 2

(M m)u M sin l Mlcos

C ( l , , ) (Ml cos ) F

+ + θ θ + θ θ

+ θ θ + θ θ θ =

 

   
(A1)

total 2 1 2 1 2

1 2 2 1 2 girder

(M ) v Mlcos C (l, , )

Ml sin (M cos )l F

+ θ θ + θ θ

− θ θ θ + θ θ =

  


(A2)

1 2 1 2

3 1 2 hoisting

(M sin )u (M cos )v Ml

C (l, , ) Mg F

θ θ + θ θ +

+ θ θ = −

 

  
(A3)

2
1 2 1

4 1 2 1

(Mlcos )u (Mlcos )v Ml

C (l, , ) Mglsin 0

θ + θ + θ

+ θ θ + θ =

 

  
(A4)

1 2 1 2

2
2 5 1 2 5 1 2

(Ml cos )u ( Ml sin )v

Ml C (l, , ) D ( , ) 0

θ θ + − θ θ

+ θ + θ θ + θ θ =

 

  
(A5)

These   equations   of   motion   for   the   case  of 
no-hoisting;  i.e. "l=0"   and   for   stationary  girder, i.e.

"v=0", can be reduced to the equations A1, A4 and A5. 
The elements j 1 2C (l, , )θ θ   , j=1,2,.., 5 and D5 (θ1, θ2) can 
be neglected for small perturbation about the nominal 
value [15]. Regarding the coordinate θ2, it can be
shown that it is not controllable or observable.
However, it will be decreased if the first coordinate θ1
is suppressed [15, 16]. Therefore, the equations of
motion can be reduced to:

1 1(M m)u Mlcos F+ + θ θ = (A6)

2
1 1 1(Mlcos )u Ml Mglsin 0θ + θ + θ = (A7)
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