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Abstarct: In this paper, design and simulation of a novel IC-compatible microelectromechanical bandpass 
filter for use in intermediate frequency range of a wireless communication system is reported. This filter is 
composed of two high-Q square frame microresonators coupled by a soft flexural-mode mechanical spring 
and can be implemented using either thick epitaxial polysilicon technology or bulk micromachining of SOI 
wafers. The resonators with new design and structure determine the center frequency, while a mechanical
coupling spring defines the bandwidth of the filter. Quarter-wavelength coupling is required on this 
microscale to alleviate mass-loading effects caused by similar resonator and coupler dimensions. Filter 
center frequencies around 72 MHz, 285 kHz bandwidth, quality factor of 250, associated insertion loss less 
than 0.44 dB, spurious-free dynamic ranges around 99 dB and input and output termination resistances on 
the order of 9 kΩ  were obtained by this design.
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INTRODUCTION

Miniaturization of the constituent components of 
super-heterodyne wireless transceivers is a field of
research that has received considerable attention
recently. Reduced size constitutes the most obvious 
incentive for replacing SAWs and crystals by
equivalent devices. Typically, the front-end of a
wireless transceiver contains a good number of off-chip
high-Q components that are potentially replaceable by 
micromechanical versions. Among the components
targeted for replacement are RF filters, including image 
reject filters, IF filters and high-Q low phase-noise local 
oscillators [1-3]. One of the challenging issues which 
has hindered deployment of the microelectromechanical 
resonators and filters is large motional resistance Rx of 
these devices with electrostatically and capacitively 
transduction.

Among methods for lowering the motional
resistance Rx of electrostatically and capacitively
transduced micromechanical resonators presented so far 
are: 1) decreasing the electrode-to-resonator gap [4], 2) 
increasing the dc-bias voltage VDC and 3) summing 
together the output currents of an array of identical 
resonators [5]. Unfortunately, each of these methods 
comes with some drawbacks. In particular, although the 
first two methods are very effective in lowering Rx
(with fourth power and square law dependencies,

respectively), they do so at the cost of linearity [6, 7]. 
On the other hand, method (3) actually improves
linearity while lowering Rx. However, this method is 
difficult to implement; since it requires resonators with 
precisely identical responses and consumes large area 
of silicon chip; since it uses an array of resonators 
instead of a single resonator.

This paper presents a novel method for lowering 
motional resistance based on a technique which utilizes 
true potential of a single square frame resonator in 
three-dimensions and raises the linearity as well. Using 
this new technique, a bandpass filter composed of two 
square frame resonators (with an effective Rx of 478 Ω)
was designed and simulated at 72 MHz. This effective 
resistance is about 75X smaller than the 35.9 kΩ
exhibited by a 72 MHz Clamped-Clamped (CC) beam 
resonator [8], 73X smaller than the 34.8 kΩ
demonstrated by a 71 MHz Free-Free (FF) beam
resonator [9] and 8.4X smaller than the 4kΩ  presented 
by a 68.1 MHz mechanically-coupled 11-resonators
array [5]. 

This Rx-reduction method is superior to methods 
based on scaling down of electrode-to-resonator gaps, 
dc-bias increases, or using an array of identical
resonators; because it allows a reduction in Rx without 
sacrificing linearity and consuming large chip area.
Furthermore, achievable quality factor of the proposed 
resonator  is  almost  an  order of magnitude higher than 
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that of a 71 MHz Clamped-Clamped beam resonator. 
Also, realization of a microfilter by coupling two or 
more square frame resonators is much simpler than 
coupling some Free-Free beam resonators.

MATERIALS AND METHODS

Filter structure and operation: Figure 1 shows
schematic top view of a two-resonator filter (along with 
bias voltage, excitation and sensing circuitry). This 
filter consists of two identical micromechanical square 
frame resonators, coupled mechanically by a flexural-
mode beam, all suspended above the substrate. The 
structure is supported by four tethers and attached to 
substrate only at anchors. 

To operate this filter, a dc-bias VDC is applied to 
the suspended filter structure and two equal and
opposite ac voltages vi and-vi are applied through RQ11
and RQ12 resistors to the input electrodes, which are 
placed by a 100 nm gap from the structure, as shown in 
Fig. 1. The application of input voltages vi and-vi create 
x-and y-directed electrostatic forces between input
electrodes  and  the  conductive  resonator  that  induce 
x-and y-directed vibration of the input resonator when 
the frequency of the input voltages come within the 
passband of the mechanical filter. This vibrational
energy is transferred to the output resonator via the 
coupling spring, causing it to vibrate as well. Vibration 
of the output resonator creates some dc-biased, time-
varying capacitors between the conductive resonator 
and output electrodes, which then source two output 
currents given by:

in out
o1 DC

in out
o2 DC

C x C yi 2V
x t y t

C y C xi 2V
y t x t

 ∂ ∂ ∂ ∂= + ∂ ∂ ∂ ∂ 
 ∂ ∂ ∂ ∂= − + ∂ ∂ ∂ ∂ 

(1)

where ∂Cin/∂x, ∂Cin/∂y, ∂Cout/∂x and ∂Cout/∂y are the 
changes in resonator-to-inner electrodes and resonator-
to-outer electrodes capacitances per unit displacement 
at output ports in x and y directions, respectively. The 
output currents io1 and io2 are then directed to resistors 
RQ21 and RQ22, which convert the currents to output 
voltages and provide the proper termination impedance 
required to flatten the jagged passband.

The basis of operation of two-resonator mechanical 
filter is shown in Fig. 2. Such a coupled two-resonator
system exhibits two mechanical resonance modes with 
closely spaced frequencies that define the filter
passband. The center frequency of the filter is
determined    primarily   by    the    frequencies   of   the
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Fig. 1: Top view schematic of a two-resonator
micromechanical filter, along with the bias
voltage, excitation and sensing circuitry. (Inner 
Electrodes for the input resonator are not shown 
for simplicity)

Fig. 2: Filter mode shapes and their correspondence to 
specific peaks in the unterminated frequency 
characteristic

constituent resonators, while the spacing between
modes (i.e., the bandwidth) is determined largely by the 
stiffness of the coupling spring. As shown in Fig. 2, 
each mode peak corresponds to a distinct, physical 
mode shape. In the lower frequency mode, both
resonators vibrate in phase and in the higher frequency 
mode, the resonators are 180 degrees out of phase.

Design of the micromechanical resonator in form 
of Fig. 3, has some advantages as follows:

• The fully-differential electrode configuration
cancels the second harmonic distortion term (HD2);
therefore, improving the power-handling capability 
and dynamic range of the filter.



World Appl. Sci. J., 6 (7): 914-925, 2009

916

• The present structure design, decreases input and 
output impedances significantly and matches the 
impedance of filter to the impedances of the stages 
before and after the filter, properly.

• Since the proposed resonator structure has four 
almost motionless node points, the quality factor 
due to energy loss mechanisms of support loss 
(QSupport) is high and hence Q of the whole
structure is high. 

• Since the constituent resonators of the filter vibrate 
in x and y directions and have no motions in z
direction (out-of-plane), the electrodes are placed 
besides the structure instead of beneath it. So, the 
fabrication, mask defining, pattern generation and 
manufacturing of the device will be done more
easily and inexpensively.

• Although, the square frame resonator can be
supposed as four electrically coupled simply-
supported beam resonators vibrating at their
fundamental flexural-mode resonant frequencies,
which essentially are not the same due to
fabrication tolerances, however, the proposed
square frame resonator vibrates only at single
frequency, even if dimensions of the constituent 
beams of the frame be unequal. 

Generally, the design of the proposed
micromechanical filter can be summarized into
following major steps:

• Design of a square frame resonator capable to 
resonate at the desired frequency by proper choice 
of dimensions.

• Estimating quality factor of the designed
microresonator and choosing proper values of
support beam dimensions. 

• Choosing manufacturable values of coupling beam 
widths, dictated predominantly by lithographic and 
etch resolution.

• Design of flexural mode coupling beam lengths to 
correspond to effective quarter-wavelenghts of the 
filter centre frequency and evaluate the resulting 
stiffnesses of the coupling beam in cases of two
physical mode shapes.

• Choosing bandwidth of the filter and achieving 
thickness of the coupling beam.

• Determining the motional resistance of the
microresonator, desired values of filter termination 
resistances and insertion loss of the filter.

• Estimating linearity of the filter by calculating
spurious-free dynamic range criterion.

Each of the above steps will be discussed in the 
following subsections.

Fig. 3: Fundamental mode shape of the
micromechanical resonator simulated by
ANSYS

Qualitative description of resonator structure: Since
center frequency of a given mechanical filter is
determined primarily by the resonance frequencies of 
its constituent resonators, careful mechanical resonator 
design is imperative for successful filter
implementation. The selected resonator design must not 
only be able to achieve the needed frequency but must 
also do so with adequate linearity and tunability and 
with sufficient Q.

As shown in Fig. 3, the microresonator is formed 
of four polysilicon beams which are attached to each 
other and organized in a square frame. Other
polysilicon tethers attach corners of this frame to
anchors. The anchors are tightly placed on substrate and 
caused the whole structure to suspend above the
substrate with a little space between them. This
polysilicon square frame can freely move parallel to 
substrate in x and y orientations.

The resonance frequency of this simply-supported
square frame depends upon many factors, including 
geometry, structural material properties, stress, the
magnitude of the applied dc-bias voltage VDC and 
surface topography. Accounting for these while
neglecting finite width effects, an expression for
resonance frequency can be written as [10]:

2
n r

0 2
r

W E
f

L4 3
β

= κ
ρπ

(2)

where Wr and Lr are the width and effective length of 
the beam respectively, E is the Young’s modulus,  is 
the density of the structural material, n = 3.1415,
6.2831, 9.4247 for the first three modes of a simply-
supported beam, f0 is the nominal mechanical resonance
frequency of the resonator if there were no electrodes or 
applied voltages and  is a scaling factor that models 
the effects of surface topography.
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Fig. 4: Mechanical frequency response of the
microresonator

Mechanical frequency response of the designed
resonator is shown in Fig. 4.

To properly excite this device, a dc-bias voltage 
VDC and two ac excitation voltages vi and-vi are applied 
across the input resonator-to-electrode capacitors (i.e., 
the input transducers). This creates a force component
between the electrode and resonator proportional to the 
product VDCvi and at the frequency of vi. When the 
frequency of vi nears its resonance frequency, the
microresonator begins to vibrate, creating dc-biased
time-varying capacitors C0(x,t) at the output
transducers. A current is then generated through the 
output transducers and serve as the outputs of this 
device. When plotted against the frequency of the
excitation signal vi, the output currents io1 and io2 trace
out the bandpass biquad characteristic expected for a 
high-Q tank circuit.

Frequency tuning: Resonance frequency of the
microresonator is a function of the dc-bias voltage VDC.
Thus, frequency of this device is tunable via adjustment 
of VDC and this can be used advantageously to
implement filters with tunable center frequencies, or to 
correct for passband distortion caused by finite planar 
fabrication tolerances. 
The dc-bias dependence of resonance frequency arises 
from a VDC-dependent electrical spring constant kelec
that subtracts from the mechanical spring constant of 
the system kmech, lowering the overall spring stiffness 
kr=kmech-kelec, thus lowering the resonance frequency 
according to the expression:

r mech elec
0

r r

1 k 1 k k
f

2 m 2 m
−

= =
π π

(3)

where kmech and mr denote values at a particular location 
(usually the beam center location). Since there are two 
electrodes on the both sides of each constituent beam of 

70

70.5

71

71.5

72

72.5

73

0 10 20 30 40 50 60
Bias Voltage, VDC [V]

Proposed Square Frame Resonator

Clamped-Clamped Beam Resonator

Fig. 5: Simulated frequency versus applied dc-bias VDC
for the present and a CC beam microresonator

the square frame resonator, the quantity kelec is obtained 
as follows [11]: 

2 2
DC in DC out

elec 2 2
0 0

V C V Ck
d d

= − − (4)

where Cin and Cout are inner electrode-to-resonator and 
outer electrode-to-resonator capacitances, respectively. 
Since it can be assumed Cin ≈ Cout, then the quantity kelec
in Eq. (4) should be multiplied almost by a factor of 2. 
If we make a comparison between the proposed and a 
doubly-clamped (CC) beam resonators both resonating 
at the same frequency, the resonant frequency f0 of the 
square frame resonator decreases further with
increasing dc-bias voltage VDC.

The dependence of the resonance frequency to dc-
bias voltage VDC for the proposed and CC beam
resonators are shown in Fig. 5.

Equivalent mechanical circuit: For the purposes of
filter design, it is often convenient to define an
equivalent lumped-parameter mass-spring-damper
mechanical circuit for this resonator (Fig. 6), with
element values that vary with location on the resonator. 
Input parameter of this circuit is force (corresponding to
voltage in electrical circuits) and the output parameter 
is velocity (corresponding to current). With reference to 
Fig. 3, the equivalent mass at a location y on the 
resonator is given by:

[ ]

[ ]

rL
2

r mode
tot 0

r 221
2 m o d e

W h X (x) dx
KEm(y)
v (y ) X (y)

ρ
= =

∫
(5)

modeX (y) sinky= (6)

where k = π/Lr for the fundamental mode shape
function  Xmode(y), KEtot is the peak kinetic energy in the 
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Fig. 6: Equivalent mechanical circuit for a
micromechanical resonator with force fi and 
velocity vo as input and output, respectively

system, v(y)  is  the  velocity  at  location y  and Wr

and h, are  width  and  thickness of the suspending 
beam, respectively. Stiffness at the middle of each 
constituent beam of the square frame resonator and at 
the coupling location were achieved by following
expressions [4, 12]:

( )r

3

L r
2m

r

W
k 4Eh

L
 

=  
 

(7)

( )rL
2m

m c 2
mode c

k
k (y l )

X (y l )
= =

=
(8)

The equivalent spring stiffness is given by:

r r2L L
2 2r 0 rk ( ) m ( )= ω (9)

where  0 is the angular resonance frequency of the 
beam. The damping factor is given by:

r r

r

L L
2 2m rL

2r

k ( ) m ( )
D ( )

Q
= (10)

where Q is the quality factor of the resonator without 
the influence of applied voltages and electrodes.

Equivalent electrical circuit: An electrical model with 
a core RLC circuit was defined for the microresonator 
based on mass-spring-damper system. When looking 
into the electrode port of the equivalent resonator
circuit of Fig. 6, a transformed LCR circuit is seen with 
element values given by:

2
r rr e r

x x x2 2 2
e r e e

k mm D
L , C , R

k Q
η

= = = =
η η η

(11)

where e is the transduction parameter for a capacitive 
transducer and is calculated theoretically as follows: 
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Fig. 7: Simulated plot presenting motional resistance 
Rx versus electrode overlap area A0 for the 
proposed and a CC beam resonator
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Of the elements in Eqs. (11), the series motional 
resistance Rx is the most influential in filter circuits. In
bandpass filters, it dictates the ease of matching the 
designed filter to low impedance stages before and after 
the filter. A closed form formula for Rx is obtained by 
substituting Eq. (12) into Eq. (11) which yields:

4
r r 0

x 2 2
0 0 DC

k m d
R

Q A V
=

ε
(13)

where A0 is the effective electrode-to-resonator overlap 
area of the resonator. From Eq. (13), for a given Q, Rx

is lowered by increasing the overlap area, A0. Fig. 7 
compares Rx versus electrode-to-resonator overlap area 
for the square frame resonator and a CC beam resonator 
vibrating at the same frequency. 

Support structure design: As discussed in Section 3, 
the designed square frame mechanical resonator is
supported by four flexural beams attached at its
fundamental-mode node points, (Fig. 3). Since these 
beams are attached at node points, the support springs 
sustain no translational movement during resonator
vibration (ideally) and, thus, support (i.e., anchor)
losses due to translational movements are greatly
alleviated. Furthermore, with the recognition that the 
supporting flexural beams actually behave like acoustic 
transmission lines at the VHF frequencies of interest, 
flexural loss mechanisms can also be negated by
strategically choosing support dimensions so that they 
present virtually no impedance to the simply supported 
beam. In particular, by choosing the dimensions of a 
flexural  support  beam  such  that they correspond to an 
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for the square frame resonator

effective quarter-wavelength of the resonator operating 
frequency, the solid anchor condition on one side of the 
support beam is transformed to a free-end condition on 
the other side, which connects to the resonator. In terms 
of impedance, the infinite acoustic impedance at the 
anchors is transformed to zero impedance at the
resonator attachment points. As a result, the resonator 
effectively “sees” no supports at all and operates as if 
levitated above the substrate, devoid of anchors and 
their associated loss mechanisms.

Through  appropriate  acoustical  network
analysis, the  dimensions  of  a  flexural  beam  are 
found   to   correspond   to   a   quarter-wavelength of 
the  operating  frequency  when  they  satisfy  the 
following expression:

2
2 n
s s

0

1 E
L W

4f 4 3
β

=
ρπ

(14)

where Ws and Ls are the width and length of the support 
beams respectively, n = 4.730, 7.853, 10.996 for the 
first three modes of a clamped-clamped beam and f0 is 
the resonance frequency of the microresonator. Figure 8 
presents resonant frequency of the proposed square 
frame resonator versus support beam length, showing a 
clear increase in the resonance frequency with
decreasing support length before it corresponds to 
around a half wavelength (λ/2) of resonant frequency of 
the microresonator (i.e. in this case, length of support 
beam virtually will be equal to zero. Thus, it causes an 
increase in frequency).

The performed simulations by FEA using ANSYS 
show that at those frequencies which resonator
resonates at the fundamental mode, the support length 
corresponding to a quarter wavelength (λ/4) will be 
around   5.25 µm,  which   is   in   close   agreement 
with Eq. 14. 

Estimating quality factor: The mechanical quality
factor (Q) of a resonator is:

W
Q 2

W
= π

∆
(15)

where W denotes the energy dissipated per cycle of 
vibration and W denotes the maximum vibration energy 
stored per cycle.

Many dissipation mechanisms exist in
microelectromechanical resonators, such as air
damping, thermoelastic damping (TED), surface loss 
and support loss. Unloaded Q of a microresonator is 
mainly the combination of these dissipation
mechanisms, expressed as [4]:

air TED Surface Support

1 1 1 1 1
Q Q Q Q Q

= + + + (16)

Thus, to determine Q of the designed resonator, it 
was necessary to calculate Q of each dissipation
mechanisms as following:

Qair denotes the quality factor due to energy loss 
mechanisms of air damping and is determined as
follows:

air
0

k
Q

b
=

ω
(17)

where k  is stiffness of vibrating spring and b is damping 
coefficient of a rectangular parallel-plate geometries 
and   has   been  derived  from  a  linearized  form  of
the compressible  Reynolds  gas-film  equation  as
follows [13]:

2

3
0

3 Ab
2 d

= µ
π

(18)

where  = 1.78×10-5 kg/m.s (for air in STP conditions) 
is coefficient of viscosity and proportional to gas
pressure and consequently mean free path of gas
molecules. A and d0 are area of the device and gap 
between the two plates, respectively. 

QTED denotes the quality factor due to energy loss 
mechanisms  of  thermoelastic damping  and is
expressed as [14]:

22
p r1 T 0

TED 2 2
p T

C WE T
Q ,

C 1 ( ) C
− α ωτ

= τ =
+ ωτ π

(19)

where T and Cp denote thermal expansion coefficient
and  specific  heat  at  constant  pressure  of the material 
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used for the beam, respectively; T0 is the environmental 
temperature and where CT denotes thermal conductivity 
of the beam material and  denotes the angular
frequency of the beam resonator.

QSurface denotes the quality factor due to energy loss 
mechanisms of surface loss and the following
expression it has been suggested for it [14]:

r r
Surface

r r ds

W h E
Q

3W h 2E
=

+ δ
(20)

where  denotes the characterized thickness of the
surface layer and Eds is a constant related to the surface 
stress.

QSupport denotes the quality factor due to energy 
loss mechanisms of support loss and it can be
calculated as follows:

tot
Support

loss

KE
Q 2

E
= π (21)

where KEtot is the stored flexural vibration energy for 
each resonant mode of a beam resonator can be
expressed as:

2 2 2
tot r r 0 0

1 1
KE mv h WL U

2 2
= = ρ ω (22)

where 0 and U0 denote the fundamental angular
frequency of the vibration and the vibration amplitude, 
respectively  and Eloss is the  energy  dissipated  per 
cycle of vibration through supports via anchors to 
substrate  and  for  a  clamped-free beam is calculated 
as follows [14]:

2
loss 0

1.3441
E

Eh 1
+ υ

= Γ
− υ

(23)

where  is Poisson ratio of the support material and Γ0
is a fundamental vibrating shear force on support where 
attached to substrate, which can be achievable by finite 
element analysis.

A plot of simulated quality factor versus support 
beam length for the proposed 72 MHz square frame 
resonator is shown in Fig. 9. As illustrated in the figure, 
the quality factor decreases rapidly below 1800 for
support beams shorter than 2 µm and it is almost 
constant around 16000 for beams longer than 4 µm.

Figure 10 presents a comparison of quality factor 
versus electrode-to-resonator gap spacing between the 
proposed resonator and a clamped-clamped (CC) beam 
resonator  vibrating  at  the  fundamental  flexural-mode
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Fig. 9: Simulated quality factor versus support length 
plot for the 72 MHz square frame resonator
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Fig. 10: Plot of Q versus electrode-to-resonator gap for 
the proposed and a CC beam resonator

resonant frequency. As illustrated in the figure, quality 
factor of the CC beam resonator is about one order of 
magnitude smaller than that of the square frame
resonator; which is due to decrease in QSupport of CC 
beam resonator at higher frequencies. i.e., at the VHF 
frequencies (work frequencies of the present filter),
energy loss mechanisms of support loss is dominated 
and has the most effect on Qtotal of the resonator. So, as 
shown in Fig, 10, quality factor is independent from
electrode-to-resonator gap spacing. To have a fair
comparison, resonant frequency of the proposed and 
CC beam resonators are chosen equal to each other by
proper choice of their dimensions. However, in case of 
square frame resonator, kinetic energy of the resonator 
is transferred to the anchors via four support beams 
which are attached to ideally motionless corners of the 
resonating frame. Specially, nodal points of the frame 
are directly available through truncating the frame
corners. So, motions of the four tethers are minimized. 
Furthermore, energy losses to anchors via support
beams are further decreased by selecting the beams 
corresponds to a quarter-wavelength of the resonance 
frequency. As a result, as shown in the figure, the 
square  frame resonator presents a higher quality factor.
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A comparison of quality factor versus ambient 
pressure between the proposed microresonator and a 
CC beam resonator vibrating at the same frequency is 
shown in Fig. 11. Quality factor of the proposed
resonator presents one order of magnitude higher than 
that of the CC beam resonator, which is primarily due
to higher stiffness of each constituent beam of the 
square frame resonator to that of the CC beam
resonator.

Coupling beam design: As described earlier, two
constituent resonators of the filter are designed to have 
the same resonance frequency. Thus, it is assumed that 
the passband of the overall filter is centered around this 
frequency. The coupling spring acts to effectively pull 
the resonator frequencies apart, creating two closely-
spaced resonance modes that constitute the ends of the 
filter passband. Since in each resonance mode, the
coupling beam adopts a specific shape, it is logical to 
consider different values for mechanical stiffness for 
each mode. Consequently, the frequency of each
resonance peak can be calculated as follows:

c1 c2
1 0 2 0

rc rc

k k
f f 1 , f f 1

k k
   

≈ − ≈ +   
   

(24)

where k rc is the resonator stiffness at the coupling 
location and k c1 and k c2 are stiffness of the coupling 
beam at the two desired resonance modes.

The transmission band between two peaks was 
calculated by:

c 2 c1
2 1 0

rc

k k
P.S. f f f

k
 +

= − =  
 

(25)

and bandwidth of the filter can be obtained from:

12

P.S.
B

k
= (26)

where P.S. is separation between the two peaks of
resonance modes achieved by modal analysis using 
FEA and k12 is the normalized coupling coefficient 
between two resonators for a given filter type (i.e.,
Butterworth, Chebyshev, etc.) [15]. The needed value 
of coupling spring constants k c1 and k c2 was then 
obtained by proper choice of coupling beam geometry 
using expressions which will be followed.

The mechanical impedance behavior of the
coupling beam as seen by the adjacent (attached)
resonators for two cases of resonance mode can be 
conveniently modeled by the following considerations:

The resonators vibrate in-phase in the higher
frequency mode and the coupling beam is in the form 
shown in Fig. 12(a). The mechanical impedance and 
stiffness of the beam are [16]: 

3
1 c 6

c1 3
1 c 3

f EI HZ
v j L H

α= = −
ω

(27)

3
c 6

c1 3
c 3

EI Hk
L H

α= − (28)

The resonators vibrate 180 degrees out-of-phase in 
the lower frequency mode and coupling beam adopts 
the shape which is shown in Fig. 12(b). Thus, the
mechanical impedance and stiffness of the coupling 
beam was calculated via relations as follows [17]: 

3
2 c 7

c2 3
1 c 3

f EI HZ
v j L H

α= = −
ω

(29)

3
c 7

c2 3
c 3

EI Hk
L H

α= − (30)

where
1

3

6

7

H sinh sin
H cosh cos 1
H sinh cos cosh sin
H sin sinh

= α α
= α α −
= α α + α α

= α + α

(31)

and
2 0.25

c c c cL ( W h /(EI ))α = ρ ω (32)

3
c c cI h W /12= (33)

In order to minimize susceptibility to beam
geometric  variations  (i.e.,  mass  variations)  caused by 
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Fig. 12: Coupling beam under forces f1 and f2 with 
corresponding velocity responses at (a) 180
degrees out of and (b) in phase resonance mode

finite layout or fabrication tolerances, the coupling
beam was designed to correspond to a quarter-
wavelength of the filter center frequency. This was 
achieved by choosing H6 = 0. Using the selected value 
of Wc and assuming that hc is determined by the desired 
bandwidth of the filter, H6 = 0 was solved for the Lc that 
corresponded to an effective quarter-wavelength of the 
operating frequency. The stiffnesses of a quarter-
wavelength coupling beam for two indicated cases are 
found to be:

Kc1 = 0 (34)
and

( )
( )

3
c

c2 3
c

EI sin sinh
k

L cos cosh 1
α α + α

= −
α α −

(35)

As described in Eqs. 25 and 26, peak separation 
(i.e. bandwidth) of the filter is directly proportional to 
addition  of  coupling  spring  constants k c1 and k c2 at 
two physical mode shapes shown in Fig. 12. Since
stiffness of a flexural mode beam is related to beam
dimensions,  bandwidth  of the filter can be set by 
proper choice of the coupling beam thickness
(assuming beam width is dictated by lithographic and 
etch resolutions). Fig. 13 presents peak separation of 
the filter versus coupling beam thickness, showing 
decrease  in  thickness  is  translated to lower stiffness 
and lower bandwidth as a result.
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Fig. 13: Peak separation of the proposed filter versus 
coupling beam thickness

Micromechanical filter termination: In addition to
determining the center frequency of the filter, the
resonator design also dictates the termination resistors 
required for passband flattening. As with other type of 
filters, the described mechanical filters must be
terminated with the proper impedance values. Without 
proper termination, the resonator Q’s will be too large 
and the filter passband will consist of distinct peaks of 
selectivity, as seen in Fig. 2. In order to flatten the 
passband between the peaks, the Q’s of the constituent 
resonators must be reduced and this can be done by 
terminating the filter with resistors. In Fig. 1, resistors 
RQ11, RQ12, RQ21 and RQ22 are used for this function.

The required value of total termination resistance 
RQi = RQi1 + RQi2 for a mechanical filter with center 
frequency f0 and bandwidth B is given by:

xi res
Qij

i filter

R Q
R 1 , i 1 , 2

2n q Q
 

= − = 
 

(36)

where n is the number of electrodes used in each 
resonator, i refers to the end resonator in question, j
refers to a particular port of the end ith resonator, Qres is 
the unloaded quality factor of the constituent
resonators, Qfilter = f0/B and qi is a normalized parameter 
obtained from a filter cookbook.15 It is found from the 
Eq. (23) that the total termination resistance RQi
decreases with the number of electrodes and if using the 
maximum capability of this design to decrease end 
impedances by using 8 input electrodes (4 outer
electrodes and 4 inner electrodes) and 8 output
electrodes (4 outer electrodes and 4 inner electrodes), 
the total termination impedances will be reduced by a 
factor of 1/8. This can be considered as an advantage 
for this particular configuration.

Spurious-free dynamic range: To get a measure of 
linearity  of   the   filter,   SFDR   criterion    was   used.
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However, before SFDR calculation, it was necessary to 
have an approximation about IM3 and IIP3 values of the 
filter. It must be noted that a large IIP3 is preferred for 
communication applications, in general. 

An expression for this IM3 force component was 
obtained by approximating the beam and electrode by 
the lumped mass-spring-damper equivalent shown in 
Fig. 6 as follows:

( ) [ ]

( ) [ ]

( )

2
0 03 DC

IM3 i 1 25
0 reff

3 3
0 0 DC

1 1 28 2
0 reff

4 5
0 0 2DC

1 211 3
0 reff

A1 V
F V . 2

4 d k

A3 V
2

4 d k

A3 V
2 d k

 ε= θ + θ


ε
+ θ θ + θ

ε + θ θ 


(37)

where 0, is the permittivity in vacuum, A0=WrWe is the 
electrode-to-resonator overlap area, 1= ( l) and

2= ( 2); where:

( )
( ) ( )2

0 0

1
1 / j / Q

θ ω =
− ω ω + ω ω

(38)

and kreff is the effective integrated stiffness at the
midpoint of the beam.

In the Eq. (37), static bending of the beam caused 
by the applied dc-bias VDC was not neglected unlike the 
previous works [18]. By equating Eq. (37) with the
fundamental force component

0 0 0
fund DC i DC i2

0 0

C A
F V V V V

d d
ε

= = (39)

and solving the expression for Vi, the input voltage 
magnitude at the IIP3 and consequently PIIP3 was found.
Assuming the generated current in the resonator was the 
same current in the filter, PIIP3 of the filter was
calculated as follows:

Qi x
i,filter i,resonator

x

2(R R )
P P

R
+

= ⋅ (40)

The out-of-band SFDR (with tones 400 and 800 
kHz offset from the filter center frequency) was
determined via the expression [19]:

( )2
min3SFDR IIP3 kT IL 10logB SNR= − − − − (41)

where all quantities are in decibels, SNRmin is the
required     minimum signal-to-noise  ratio,  k is   the 
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Fig. 14: Simulated output power Po versus input power 
Pi plot for determination of IIP3 for the
proposed and a CC beam microresonator
vibrating at the same frequency. Input tones for 
IM3 determination are spaced 400 and 800 kHz 
from the resonator center frequency

Table 1: Material properties and surrounding conditions of the filter

Parameter Explanation Value Units

E Young's modulus for polysilicon 150 GPa
ρ Density of polysilicon 2,300 kg/m3

υ Poisson's ratio 0.28 

αT Thermal expansion coefficient 2.6×10-6 K
Cp Specific heat 1.63×106 J/Km3

CT Thermal conductivity 90 W/mK
T 0 Environmental temperature 300 K
µ Absolute viscosity of air 1.78×10-5 Ns/m2

Pa Ambient pressure 0.1 torr

Boltzmann constant, T is temperature in Kelvin and kT
is the thermal noise power delivered by RQ into a 
matched load, IL is the insertion loss of the filter and B
is the filter bandwidth. Figure 14 compares a plot of 
output power Po versus input power Pi between the 
present and a CC beam based polysilicon microfilter, 
both working at the same frequency.

Micromechanical filter and resonator
characteristics: The simulated spectrums for the
properly terminated 72 MHz two-resonator
micromechanical  filter  based  on  the  proposed
square frame resonator and a filter based on 72 MHz 
CC beam resonator are shown in Fig. 15. The
bandwidths  of  the  filters  are  around 285 kHz. 
Thanks to the higher quality factor, the insertion loss 
for the proposed filter is only 0.44 dB and calculated 
via the following formula:

Q x

Q

R R
IL 20log

R

 +
=    

(42)
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Table 2: Micromechanical resonator characteristics
Parameter ExplanationValue Units
f0 Mechanical resonance frequency 72.7 MHz
κ Frequency modification factor 0.99274 -
Lr Average beam length 10 µm
Wr Beam width 2 µm
hr Structural thickness 15 µm
We(out) Outer electrode width 5 µm
We(in) Inner electrode width 4 µm
d0 Electrode to res. gap 100 nm
Ls Support beam length 5.3 µm
Ws Support beam width 1 µm
hs Support beam thickness 15 µm
Q Quality factor 9,912 -
mr Resonator mass at middle 

of each beam 3.45î 10-13 kg
kmech Resonator stiffness at 

middle of each beam 72,000 N/m
kelec Electrical spring constant -1255 N/m
ηe Transduction parameter 2.228î 10-6 C/m
VDC DC-Bias voltage 35 V
Rx Motional resistance 478 Ω

Table 3: Calculated Q of each dissipation mechanisms and total Q of 
the resonator

Qair QTED QSurface QSupport Qtotal

24,955 19,500 126,050 625,572 9,912
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Fig. 15: Mechanical frequency response of the designed 
filter without applying dc-bias voltage VDC

Eq. (42) calculates that insertion loss of a 72 MHz 
filter based on CC beam resonator is almost 6 dB.

The material properties used in this work and
surrounding conditions of the filter are listed in Table 1. 
Table 2 lists  the  simulated  micromechanical
resonator  summary. The  calculated  quality  factor  of 
the resonator and each of dissipation mechanisms are 
presented in Table 3. Finally, Table 4 lists the present 
micromechanical filter characteristics. 

Table 4: IF Micromechanical filter summary

Parameter Explanation Value Units

Lc Coupling beam length 5.3 µm

Wc Coupling beam width 1 µm

hc Coupling beam thickness 6 µm

f0 Center frequency 72 MHz
P.S. Peak seperation 206 kHz
B 3dB bandwidth 285 kHz
Q Quality factor 250 -
I.L. Insertion loss 0.44 dB
SFDR Spurious free dynamic range ~99 dB

RQi Q-control resistors 9 kΩ

CONCLUSION

Design and simulation of an IF micromechanical 
filter based on the new structure square frame
microresonator suitable for operating around 72 MHz 
was reported. The proposed microresonator exhibits 
series motional resistances considerably smaller than 
that of other beam resonators by a factor equal to the 
number of electrodes used in each resonator. The
present method for Rx-reduction does not degrade
linearity of the resonator and in contrast to arrayed 
microresonators, does not consume extra chip area.
This technique alleviates some of remaining challenges 
that slow the advancement in integration resonators, 
filters and oscillators into communication systems and 
helps to realizing a single-chip, fully integrated
communication system based on RF MEMS
technology.
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