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Abstract: This paper applies He’s max-min method for obtaining approximate periodic solution of a 
generalized nonlinear oscillator. The method is extremely simple but remarkably effective. Comparison of 
the obtained solution with the numerical one is given, showing high accuracy of the approximate solution. 
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INTRODUCTION

Recently, in a review article [1], Ji-Huan He gave a 
heuristic introduction to ancient Chinese mathematics, 
elucidating that it can be powerfully applied to solving 
nonlinear differential equations! The article [1] has then 
sparked an intense interest in the application  of ancient 
Chinese mathematical methods to nonlinear equations. 
The ancient Chinese mathematics mainly include the 
Ying Buzu Shu [2, 3], He Chengtian inequatity [4, 5] and 
ancient Chinese musical scales [6]. The Ying Buzu Shu 
[2, 3] was developed into a simple amplitude-frequency
formulation [7-11]; He Chengtian inequatity was
developed  into  the  max-min approach [12, 13]; 
Tong [14] proved that the ancient Chinese musical 
scales, 2/3, 7/12, 24/41 and 31/53 used in 40 BC in 
ancient China are the best approximations. It is
mysterious how ancient Chinese got such best results 
without using modern mathematics. Lan and Yang
obtained another scale 179/306 (Lan-Yang Scale) [15]. 
It is really very exciting to see the revival of ancient 
Chinese mathematics. 

In this paper, we will apply the max-min method 
[12, 16] to a generalized oscillator. The method is based 
on He Chengtian’s inequality [4, 5]. Now it is easy to 
determine maximal and minimal solution thresholds of a 
nonlinear equation and the ancient technology can be 
powerfully applied. 

MAX-MIN APPROACH

Consider the following Duffing equation with
2n+1-order nonlinearity:

2n 1u u u 0, u(0) A, u (0) 0+′′ ′+ + ε =      =    = (1)

where  n is a positive integer and needs not to be 
small, i.e. 0≤ε<∞.

This equation can be solved by the
parameter-expansion method [17], the homotopy
perturbation method [18-20], the equivalent
linearization  method  [21] and others. A complete
review on various analytical methods is available in 
Refs [1, 16]. Hereby we will apply the max-min
approach suggested by Ji-Huan He [12]. 

We re-write Equation (1) in the following form:

2nu (1 u )u 0′′ + + ε = (2)

According to the max-min approach [12], we
choose a trial function:

u(t) Acos t= ω (3)

where ω  is  a  frequency  to be determined later. 
With this trial function, the maximum and minimum 
values of 1+εu2n are 1+εA2n and 1, respectively and it 
follows that:

2n
21 1 A

1 1
+ ε

< ω < (4)

Now, using the He Chentian interpolation [4, 5], we 
have:

2n
2 2nm n(1 A )

1 k A
m n

+ + ε
ω = = + ε

+
(5)

where m and n are weighting factors and k=n/m+n. The 
frequency can be approximated as:
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2n1 k Aω = + ε (6)

thus giving rise to an approximate solution: 

2nu(t) Acos[ 1 k A t]= + ε (7)

In view of (7), we now re-write Equation (1) in the form

2n 2n 2 n 1u (1 k A )u k A u u +′′ + + ε = ε − ε (8)

If, by chance, Eq.(7) is the exact solution of Eq.(1), 
then the right hand side of Eq.(8) vanishes. On the other 
hand, if it is only an approximation to the exact solution, 
then we evaluate k  by expanding the residuals, i.e., the 
right hand side of Eq.(8), into a Fourier series. More 
precisely, we have:

2n 2 n 1
2n 1

n 0

1 2n 1
n 0

k A u u b cos[(2n 1) t]

b cos( t) b cos[(2n 1) t]

∞
+

+
=

∞

+
=

ε − ε = + ω

= ω + + ω

∑

∑
We set 

T
2n 2 n 14

1 0

4 2
b ( k A u u )cos( t)dt 0, T

T
+ π

= ε −ε ω = =
ω∫ (9)

to approximately identify k , which reads:

2(2n 1)!!
k

(2n 2)!!
+

=
+

(10)

Finally, the frequency and the period are obtained as:

2n2(2n 1)!!
1 A

(2n 2)!!
+

ω = + ε
+

(11)

and

2n

2
T

2(2n 1)!!1 A
(2n 2)!!

π
=

++ ε
+

(12)

The exact period of Eq.(1) reads:

2
ex 2n0

2 2n

dt
T 4

A
1 (1 cos t cos t)

n 1

π

=
ε

+ + + +
+

∫


(13)

The frequency is:

ex
ex

2
T

π
ω = (14)

Finally, by using equations (11) and (14), the
approximate value of the frequency can be compared 
with the  exact  one  for  fixed values of A and ε.
When n = 1, our result is same as those in Refs [1, 11].

CONCLUSION

The max-min method is of utter simplicity and
effectiveness  for  nonlinear  oscillators. The method 
can  used  by  engineers with hand-and-pencil
without the requirement of advanced calculus.
Application of He Chengtian’s inequality to other types 
of nonlinear equations was given by J.H. He in his 
recent publication [22]. 
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