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Abstract: Let {Xn, n=1} be a sequences of i.i.d. random variables with survival function 1F(x) P[X x]= > .
A wavelet linear survival function nF(x)  based on X1, X2,…, Xn is introduced as an estimator for nF(x) . We 
establish that the Lp’-loss (2=r=p′= ∞) of the linear wavelet survival function estimator for a stochastic 
processes convergence at the rate 

rs
2 s 1n (s s 1 /p 1 / p )

′−
′+ ′ ′= − +  when the survival function, nF(x)  belongs to the 

Besov space s
p,qB . Strong consistency and pointwise as well as uniform of nF(x)  are discussed. 
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INTRODUCTION

Suppose that {Xn,  n=1} is a sequences of i.i.d.
random variables with a common one-dimensional
marginal probability density function f and survival
function 1F(x) P[X x]= > . Bagai and Prakasa Rao [1] 
proposed empirical distribution and studied strong
consistensy of it for sequence of associated random 
variables. Doosti and Zarei [2] extended their results to 
negatively associated case. shirazi and Doosti [3] and 
Doosti and Niroumand [4] extended the results for m-
dependent and Mixing sequences of random variables.
Antoniadis et al. [5] describes a wavelet method for the 
estimation of density and hazard rate functions from
randomly right-censored data. Their method is based on 
dividing the time axis into a dyadic number of intervals 
and then counting the number of events within each 
interval. Wu and Wells [6] studied hazard rate
estimation by non-linear wavelet methods in the setting 
of the counting process intensity model. An asymptotic 
formula for the mean integrated squared error (MISE) 
was provided.Rodriguez-casal and Una-alvarez [7]
assume the Koziol-Green model of random censorship, 
under which the survival function of the censoring 
variable is a power of the survival function of
interest.In this paper, a wavelet linear survival function 

nF(x)  based on X1, X2,…, Xn is introduced as an 
estimator for nF(x) . We establish that the Lp′-loss
(2=r=p′= ∞) of the linear wavelet survival function
estimator   for   a   stochastic   processes   convergence
at the rate

rs
2 s 1n (s s 1 /p 1 / p )

′−
′+ ′ ′= − +  when the survival

function, nF(x)  belongs to the Besov space s
p,qB . Strong 

consistency and pointwise as well as uniform of nF(x)
are discussed.

Some  preliminaries  of  the  linear wavelet
estimator of a survival function are given in section 2 
and section 3 provides its asymptotic properties.
Chapter 4 provides some conclusions and suggestions 
for future works.

PRELIMINARY

Let {X}i=0 be a sequence of real-valued random 
variables on the probability space (Ω ,ℵ,P). We suppose 
that Xi has a bounded and compactly supported
marginal density f(.), with respect to Lebesgue measure, 
which does not depend on i We are interested in 
estimating this density from n observations Xi, i = 
1,…,n. The motivation behind wavelet based linear
estimator of the survival function comes from a formal 
expansion (Daubechies [8, 9]) for any function

2F(x) ( )∈L R ,

0 0 0

0 0

j , k j , k j ,k j,k j j
k Z j j k Z j j

F(x) P F(x) DF(x)
∈ ≥ ∈ ≥

= α φ + δ ψ = +∑ ∑∑ ∑

where the functions

0 0

0

j / 2 j
j , k (x) 2 (2 x k)φ = φ −

and
j / 2 j

j , k (x) 2 ( 2 x k)ψ = ψ −

constitute an (inhomogeneous) orthonormal basis of 
L2(R). Here φ(x) and ψ(x) are the scale function and the 
orthogonal wavelet, respectively.Define

0 0

x x
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Wavelet coefficients are given by the integrals 
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α = φ

= φ

= φ

= φ

= φ

∫
∫
∫ ∫
∫ ∫
E

(2.1)

similarly we could show j,k j , k(X)δ = ψE .
We could estimate coefficients as follows

0 0

n

j , k j , k i
i 1
n

j, k j ,k i
i 1

1ˆ ( X )
n
1ˆ (X )
n

=

=

α = φ

δ = ψ

∑

∑

We suppose that both φ and ψ∈Cr+1,  r∈N, have 
compact supports included in [-δ,δ]. Note that, by 
corollary 5.5.2 in Daubechies [8], ψ is orthogonal to 
polynomials of degree =r, i.e.

l(x)xdx 0, l 0,1,...,rψ = ∀ =∫

 We suppose that nF(x)  belongs to the Besov class 
(see Meyer [10], §VI.10), 

s
p, q

s
s ,p,q p , q B

F {f B , | | f | | M}= ∈ ≤

for some 0<s<r+1, p=1 and q=1, where 

s 0p, q
0

js q 1 / q
j p j pB

j j
| | f | | | | P f | | ( ( | |Df | | 2 ) )

≥

= + ∑

We may also say s
p , qF(x) B∈  if and only if 

0 pj , . l (Z)|| ||α < ∞

and

p

0

j ( s 1 / 2 1 / p ) q 1 / q
j,. l (Z)

j j
( (|| || 2 ) )+ −

≥

δ < ∞∑ (2.2)

where
p

p 1 / p
k Zj,. l ( Z ) j , k|| || ( ) .∈γ = γ∑  We consider Besov spaces 

essentially because of their executional expressive
power  [Triebel [11] and the discussion in Donoho et al.
[12]]. We construct the survival function estimator 

0 0

j0

n j , k j , k
k K

ˆF
∈

= α φ∑ (2.3)

where Kj0 is the set of k such that

0j , ksupp(F) supp( ) .∩ φ ≠ φ

The fact that φ has a compact support implies that 
Kj0 is finite and Card Kj0 = O(2j0).

MAIN RESULTS

Theorem 1: Let s,p,qF F∈  with s=1/p, p=1 and q=1 then 

for some r=2 and p′=max(r,p), there exists a constant C 
such that 

rs
1 2 sr

n p| | F F|| Cn
′

′+
−

′− ≤E

where s s 1 /p 1/p′ ′= + −  and 
1

0 1 2 sj2 n .′+=

Proof: First, we decompose r
n p| | F F|| ′−E  into a bias 

term and stochastic term 

0

0

r
j pr

n p 1 2r
n j p

| | F P F | |
| | F F|| 2 2(T T )

| |F P F ||
′

′
′

 −
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E
E

(3.1)

Now, we want to find upper bounds for T1 and T2.
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By Holder's inequality, with 1/q+1/q′ = 1, from the 
above equation, we have 

0 0
s s
p , q p , q

s j s j1 / r
1 B BT C| |F | | 2 C | |F | | 2 .′

′

′ ′− −≤ ≤

The last inequality holds,because of the continuous 
Sobolev injection [see Triebel [11] and the discussion 
in Donoho et al. [12]] which implies that for

s s
p,q p , qB B ,′

′⊂  one gets, 

s s
p , q p , qB B

| |F | | | |F | |′
′

≤

 Therefore, 
0r s j

1T K2 ′−≤ (3.2)
Next, we have 
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= − = α − α φ∑E E

Now the use of Lemma 1 in Leblanc [13], p. 82 
(using Meyer [10]) gives 

r 0

0 0 p

rj (1/2 1 / p )
2 j , k j , k lˆT C {|| || }2

′
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Further, by using Jensen's inequality the above 
equation implies,

0
0 0
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To complete the proof, it is sufficient to estimate 
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Using the Rosental's inequality and the fact that 
card Kj0 = O(2j0) we have 
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Now by substituting above inequality in (3.3), we get 
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By substituting (3.2), (3.4) and 
1

0 1 2 sj2 n ′+=  in (3.1) 
theorem is proved.

Theorem 2: Let s,p,qF F∈  with s=1/p and p=1. Then for 
some r>1, there exists a constant C>0 such that, for 
every ε>0,

2rs
1 2 s2r

n
x

supP[|F(x) F(x)| ] C n foreveryn 1,
′−
′+−− > ε ≤ ε ≥

where s s 1 / p′ = −  and 
1
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Proof: By using Markov inequality, we get that for 
every ε>0,
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x x
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≤ ε −
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Corollary 1: Under the conditions of Theorem 3.2 for 
every x, if r>1+1/2s′, then 

nF ( x) F(x) a.s. as n .→ → ∞

Proof: For r>1+1/2s′, observe that 
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n
n 1 n 1

P[ |F(x) F(x)| ] C n
′−
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∞ ∞
−

= =

− > ε ≤ ε < ∞∑ ∑ (3.6)

The result then follows by using the Borel-Contelli
Lemma.

Next we ontaiend a version of Glivenko-Cantelli
Theorem. The proof follows along the lines of
analogous result in Bagai and Prakasa Rao [1].

Theorem Let {Xn, n=1} be a stationary sequence of 
i.i.d. random variables satisfying the conditions of
Theorem 3.2 Then for any compact subset J⊂R,

nsup[|F(x) F(x)|: x J] 0 a.s as n− ∈ → → ∞

Proof: Let K1 and K2 be chosen such that J⊂[K1, K2]
into bn sub-intervals of length δn→0 where {δn} is 
chosen such that 

2rs
1 2 s1

n
n

n
′−
′+−δ < ∞∑ (3.7)
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such a choice of {δn} is possible. For instance, choose 
δn = n-θ where 2rs

1 2 s0 1′
′+< θ < − . Note that 1

n nb C .−≤ δ

Let
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Now by the mean value theorem for Xn,j  < u* < x 
we have 

n , j n , j n , jF(x ) F(x) F(x) F(x ) (x x )f(u )∗− = − = −

Since f, the density of X1 is bounded by the
hypothesis, it follows that there exists a constant C>0 
such that 

n , j n n , j 1 n|F(x ) F(x)| C , |F(x ) F(x)| C+− ≤ δ − ≤ δ

for 1=j=N and x∈Inj. Then for ε>0, choose n = n(ε)
such that 

n
1

2C .
3
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From (3.5) and (3.6), we get, for n=n(ε),
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2rs
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The result follows by using (3.7) and Borel-
Cantelli Lemma.

Remark 1: Suppose 1<p ′<2. One can get upper bounds 
similar to those as the theorem 3.1 for the expected loss 

p
n p| | F ( x ) F|| ′

′−E .

Observing that 
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p p 1 p p
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∈
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∈
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∑

∑

E E

E

for some positive constant C1, C2.

Remark 2: By using some other version of Rosental's 
inequality, The above results could be easily extended 
for some classes of dependent random variables such as 
Negatively dependent (ND), Positive dependent (PA), 
m- dependent and so on.

CONCLUSION AND SUGGESTIONS

The survival function, also known as a survivor 
function   or   reliability  function,  is  a  property  of
any  random  variable  that  maps  a  set of events, 
usually associated with mortality or failure of some
system,  onto  time.  It  captures  the  probability  that 
the  system  will  survive  beyond  a  specified  time. 
The term reliability function is common in engineering 
while the term survival function is used in a broader 
range  of  applications,  including  human  mortality. In 
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this paper a wavelet linear survival function nF(x)

based on X1, X2,…, Xn is introduced as an estimator for 
nF(x) . We establish that the Lp′-loss (2=r=p′=∞) of the 

linear wavelet survival function estimator for a
stochastic processes convergence at the rate

rs
2 s 1n (s s 1 /p 1 / p )

′−
′+ ′ ′= − +  when the survival function, nF(x)

belongs to the Besov space s
p,qB . Strong consistency 

and pointwise as well as uniform of nF(x)  are
discussed.  Some  open  problems  which  could  be 
done  in  future  works  might  be  finding  distribution 
of  the  estimator, asymptotic  biased  and  variance  of 
the estimator and comparing with old versions of
survival function.
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