
World Applied Sciences Journal 6 (2): 168-181, 2009
ISSN 1818-4952
© IDOSI Publications, 2009

Corresponding Author: Dr. S.M.J. Mirzapour Al-e-Hashem, Unit 6, No.7, Bahar Azadi Alley, Abolfazl st., Marzdaran Blvd.,
Tehran, Iran, PC: 1461743361

168

An Efficient Method to Solve a Mixed-model
Assembly Line Sequencing Problem Considering a Sub-line

S.M.J. Mirzapour Al-e-Hashem and M.B. Aryanezhad

Department of Industrial Engineering, Iran University of Science and Technology,
P.C.16846113114, Tehran, Iran

Abstract: To meet the diversification of consumer's preferences, mixed-model assembly lines were
installed in many manufacturing plants. In some of them, a large variation exists in assembly times among
different product types. The large variation reduces production efficiency and may cause a line stoppage.
These variations can be reduced by installing a bypass sub-line which processes a portion of assembly
operations of products with relatively longer assembly times. In spite of its significance, sequencing
problem on bypass sub-line rarely has been discussed in the literature. This paper deals with a sequencing
problem with a bypass sub-line (MALSP-B) with the goals of leveling the part usage rates and reducing
line stoppages. The former objective is taken from the literature and the later is introduced in this paper.
Also some unsynchronized situations which are disregarded in previous studies are considered. Finally a
hybrid algorithm based on Genetic Algorithm (GA) and event based procedure is developed to solve the
problem. Efficiency of the proposed algorithm is demonstrated through comparing with optimal solutions
are obtained from an exhaustive enumeration method.

Key words: Sequencing • mixed model assembly line • bypass sub-line • hybrid genetic algorithm • event
based procedure • enumeration

INTRODUCTION

Just-in-time (JIT) is a management philosophy that
uses a set of integrated activities to achieve
manufacturing flexibility with minimal inventories [1].
One manufacturing problem that is often associated
with JIT practices is sequencing mixed models on
assembly lines. Mixed model assembly lines are widely
used in manufacturing industries to meet diversified
demand of consumers without the need for large
product inventories. Sequencing products to be
assembled at the mixed model assembly line is
recognized as an important work for improving its
performance. Note that this problem assumes that
mixed model assembly line balancing problem is solved
before. In other words; first Mixed Model Assembly
Line Balancing Problem (MALBP) is solved then being
aware of the number of stations and also configuration
of operation assignment, the problem is determining the
sequence of all products in a way that some manager's
objectives are met. This problem is called in the
literature as mixed Model Assembly Line Sequencing
Problem (MALSP) which differs from MALBP.
Therefore in the following the literature of sequencing
problem on mixed model assembly line is reviewed.

The sequencing may vary, depending on the goals
of a company. Mainly the following five goals have
been discussed in the literature:

• To keep a constant usage rate of every part used in
the assembly line [2-10].

• To level the loads (assembly times) at each work
station on the assembly line [11, 12].

• To keep the constant rate of feeding products into
the assembly line [13].

• To minimize the total conveyor stoppage time [14-
16].

• To minimize the number of required setups [1, 17].

Boysen et al. [18] presented a survey study and
classified this model from several points of view.
Rahimi-Vahed and Mirzaei first, presented a multi
objective model for mixed model assembly line
sequencing problem then solved it by a new frog-
leaping algorithm [19]. Kim and Jeong [20] presented a
new model for mixed model assembly line sequencing
problem to minimize unfinished works. Rahimi-Vahed
et al. developed a multi objective mixed model
assembly line sequencing problem and solved it via
scatter search [21]. Ding compared two weighted

World Appl. Sci. J., 6 (2): 168-181, 2009

169

approaches for sequencing mixed model assembly line
with multiple objectives; leveling workloads for
stations on the line and keeping a constant rate of usage
for every part used on the line [22].

When some different types of products are
manufactured at the mixed-model assembly line and
assembly times are significantly different among these
product types, the production efficiency usually reduces
due to the line stoppage [16, 23]. The variation in the
assembly times can be reduced by installing a bypass
sub-line. If we could classify all products into two
categories in a way that the first category have small
production time and the other have large production
time; installing a bypass sub-line would seem
necessary. The bypass sub-line is set up adjacent to a
main assembly line and processes a portion of assembly
operations of products with relatively longer assembly
times [2, 12]. Even if installing the bypass sub-line the
problem of sequencing the products remains to be
solved. The sequencing problem in a mixed mo del
assembly line with a bypass sub-line (MALSP-B) for
levelling the part usage rate and work loads was
considered by [12].

The purposes of this paper are to consider a
sequencing problem that levels the part usage rates and
minimizes the line stoppage rate for mixed model
assembly line with a bypass sub-line. A hybrid meta
heuristic algorithm is developed to solve the problem.
In this algorithm, a GA is combined with an event
based procedure to gain advantageous of that to
consider Bypass sub-line, unsynchronized situations
and Line stoppages which are disregarded in the
literature. To demonstrate the efficiency of the
proposed algorithm, the result of solving test problems,
via our proposed algorithm, is compared with the
optimal solution which is obtained via an exhaustive
enumeration method.

Problem description (MALSP-B): Consider an
assembly line which consists of a main line with k1
stations and a bypass sub-line with k2 stations. It is

assumed that all stations are balanced before (Mixed
Model assembly line Balancing Problem). All products
are classified into the following two categories:
products which are processed at the bypass sub-line
(type2) and products which are processed at the main
line (type1). But products of the same type don't use
necessarily the same parts. Also if they use the same
parts, their consumption rates are not necessarily the
same.

This typically assembly line is shown in Fig. 1.
Assembly rout of product type1 are m1, m2, …, mH,

mH+1, …, mk1, respectively. That is; a product type1
moves directly to station m(H+1) (which is named
junction station), after completion of its operation at Hth
station of the main line (mH).

Assembly route of product type2 are m1, m2, …,
mH, b1, b2, …, bk2, mH+1, …mk1 respectively. That is; a
product type2 moves to the first station of the bypass
sub-line (b1) after completion of its operation at Hth
station of the main line (mH). After this product is
processed at the last station of the bypass sub-line (bk2),
it returns to the main line at station m(H+1).

The production sequence at the bypass sub-line is
obviously a partial sequence of the production sequence
at the first H stations of the main line. It means that
product sequence in the bypass sub-line is the same as
the product sequence at the first H station of the main
line from which products type1 are subtracted. And
production sequence at the first H station of the main
line differs from the case at the remaining stations of
the main line. Moreover, Cycle times of the main line
(c1) and bypass sub-line (c2) can be different.

The question is determining the sequencing of all
products in a way that some objectives of the managers
are met.

Often a goal in sequencing problem on the mixed
model assembly line is keeping the usage of parts for
the different products being produced as level as
possible. Constant use of parts allows easier
implementation of a JIT manufacturing environment
due to lower variations in production quantities and

Fig. 1: Assembly line with a bypass sub-line

mH+1 mH+2 mK1mHm2m1

b1 b2 bK2

Type 1

Type 2

Junction
Station

World Appl. Sci. J., 6 (2): 168-181, 2009

170

Fig. 2: Unsynchronized situation

work in process inventories. This objective function has
been widely studied first by [2] and more recently by
[3-5, 10, 12, 15, 23-26].

The other goal, introduced in this paper, is
minimizing total waiting time at the stations due to
occurrence of unsynchronized situations which are
described in the following section. Since these two
objective functions are not in the same dimension, we
convert them to cost terms. Now these two terms are
merged and formulated as a non linear integer
programming.

Unsynchronized situations: Unsynchronized situation,
occurred in junction station (mH), is a situation in which
two products of different types (one of type1 and the
other of type2) reach to junction station simultaneously.
Note that in previous papers theses situations are not
considered and they are eliminated through assuming
two buffers which were located right before and after
the bypass sub-line. Considering these situations bring
about some difficulties in using mathematical modeling
approaches. Because these situations are rule based and
some rule based approaches like event-based procedure
are needed.

Generally in unsynchronized situation if two
products (one of type1 and the other of type2) reach to
junction station concurrently, then the right of way is
given to the product with higher priority, else if they
have the same priority, the right of way is given to
product type1 (because the importance of main line).

It is clear that when a product type1 leaves station
mH and at the same time a product type2 leaves station
bk2, an unsynchronized situation is occurred since it
leads to either main line stoppage (MS) or sub-line
stoppage (SS) (Fig. 2).

The rules can be used here depend on the nature of
the assembly line, products priorities and maybe their
types. Therefore, they can be different form one
problem to another. Anyway in this paper some
reasonable rules are considered and the problem is
solved according to these hypothetical rules. All

unsynchronized situations rules considered in this paper
are as follows:

Situation#1: A product type1 leaves station mH and
a product type2 leaves station bk2 simultaneously. In
this case, priority is usually given to main line.
Therefore bypass line has to be stopped which is named
as Sub-line Stoppage (SS).

Situation#2: A product type1 leaves station mH and
a product type2 ready to leave station bk2 which has
been waiting in this station during the last cycle time
and due to occurrence of the situation#1. In this case
priority is given to sub-line, therefore main line has to
be stopped which is names as Main line Stoppage (MS).

Situation#3: A product type1 ready to leave station
mH which has been waiting in this station during the
last cycle time due to occurrence of the situation#2 and
the product type2 leaves station bk2. In this case,
priority is given to main line. Therefore a SS is
occurred.

In other situations, priority is determined, based on
FIFO (First in first out) rule.

Notation
aij: The number of part j,j = (1,…,m) is required to

assemble one unit of product i, i = (1,…,n).
di: Demand for product i.

n
i

i 1
D d

=
= ∑ : Total number of units for all product (total

demand) also represents number of positions
in sequence.

cm: c1 and c2 denote cycle times at the main line and
bypass sub-line respectively.

km: k1 and k2 denote number of stations at the main line
and bypass sub-line respectively.
n ij i

j
i 1

a d
r

D=

⋅
= ∑ : Average consumption rate of part j.

xik: Total number of units of product i produced over k
stages, k = 1,…,D.

n
jk ij ik

i 1
v a x

=
= ⋅∑ : The quantity of part j required during k

stages.

mH+1 mH+2 mK1mHm2m1

b1 b2 bK2

Type 1

Type 2

Junction
Station

World Appl. Sci. J., 6 (2): 168-181, 2009

171

su
1 ,if station s is stopped at stage u

Q
0 ,otherwise


= 


Where, u is the counter of event in procedure and s is
the number of stations, s = {m1, m2,…, mH, b1, b2,…,
bk2, m(H+1), m(H+2)…,mk1}
RTsu: Is the remaining time to complete current process

at station s and at stage u.

Objective functions: The first objective of the model is
leveling part usage rate and formulated as follows:

m D

1 jk j
j 1 k 1

Minf v k r
= =

= − ×∑∑ (1)

St:
n

ik
i 1

x k k
=

= ∀∑ (2)

i(k 1) ik

ik

x x , i,k

x integer, i,k
+ ≥ ∀

∀
(3)

Where,
m D

jk j
j 1k 1

v k r
= =

− ×∑ ∑ is the cumulative deviation of

real consumed parts from its average consumptions.
The first constraint (Equation 2) ensures that in stage k,
k products is produced which is equal to total number
of units of product from various models. The second
constraint (Equation 3) ensures that total number of
units of product i produced over (k+1) stages is not
lower than that of in previous stage.

The second objective function which is introduced
in this paper aims to minimize total waiting time at all
stations during the production and it is equivalent to
line stoppage reduction including SS and MS and
formulated as follows:

U S

2 su su
u 0 s 1

Minf Q RT
= =

= ×∑∑ (4)

Problem solving: Regarding to the nature of this
assembly line, production sequence which enters the
first station of the line (input sequence) is completely
different from that of exits from the last station (output
sequence). What is required to calculate the first
objective function is the output sequence. on the other
hand to calculate the second objective function, it’s
required to know total waiting time between the
entrance of the first product of sequence into the first
station of the assembly line and completion of last
process of the last product at the last station of the

assembly line. To know these details it is necessary to
feed the products step by step into the assembly line
according to a predetermined sequence and record
assembly line condition in each step till the last product
of sequence leaves the last station of the assembly line.
To simulate assembly line, including the main line and
bypass sub-line, an event based procedure is proposed.
Stage or event here means the movement of a product
from a station to another. But there are several products
in the line so stage is the movement of the next product
which its process is completed and also its next station
is empty. It is noteworthy due to the unsynchronized
situation rules which are defined to move products at
the junction station m(H+1), every input sequence as
vector X convert to a unique output sequence as vector
Y. It’s obvious that by changing these rules, output
sequence which results from an input sequence will
change consequently. In every stage of procedure,
movement possibility of products along assembly line
is checked. The products for which movement are
possible, make progress. In the next stage, movement
possibility is again checked and this cycle is repeated
until the end of procedure.

Movement possibility of a typical product in
station s and at stage u is checked according to two
important facts; first, the process of this typical product
should be completed in station s. second, the next
station to which this product moves, should be vacant.
Note that, there is maybe a product, for which process
in station s is completed but the next station is not being
vacant. This situation which is called here "station
stoppage" leads the product (in spite of its process
completion) to stop at station s till the next station will
be vacant.

When time passes, the first product meets the
movement possibility conditions is the next event
would be occurred in our procedure.

Time Intervals (TI) between sequential stages are
calculated according to the remaining time of running
process in each station and also station stoppages:

{ }u s(u 1) s(u 1) s(u 1)s
TI min RT |RT 0,Q 0 s− − −= > = ∀ (5)

Where, RTsu is the remaining time of process of the
product in station s at stage u. Therefore RTsu>0 means
that process of the product at station s is not completed
yet and therefore this station is not vacant at stage u.
Also Qsu is a binary variable that indicates whether
station s is stopped at stage u (Qsu = 1) or not (Qsu = 0).
Therefore Qsu = 0 means that station s is not stopped at
stage u.

In other words, Time interval (TI) is the time
between two sequential events (stages u and u-1) and

World Appl. Sci. J., 6 (2): 168-181, 2009

172

that is equal to shortest time from the end of previous
event takes to complete the process of a product in a
station.

After the procedure is completed, output sequence
is calculated and being aware of that, the first objective
function can be obtained using formulation (1). On the
other hand according to the records of the waiting times
in stations during the procedure steps, the second
objective function can be calculated too using
formulation (2). This way, the objectives functions (1),
(2) can be calculated for every input sequence which is
fed to the assembly line. These two objectives are
merged into a single objective with multiplying them to
their unit costs:

1 1 2 2MinZ w f w f= ⋅ + ⋅ (6)

Where, w1 and w2 are the unit cost of deviation
from average part usage and the unit cost of line
stoppages, respectively.

Event based procedure: Step0: initialize g = 0
(counter of output) and u = 0 (counter of stage)

Step1: Take an input sequence such as vector X
Step2: Feed the first product of sequence into the first

station (m1)
Step3: At the stations which a product enters them at

the stage u; set Qsu = 0 and calculate the
remaining times (RTsu), using the following
equation for them.

su 2

su 1

s subline RT c
if

s mainline RT c
∈ ⇒ =

 ∈ ⇒ =

Where, s = {m1,m2,…,mH,b1,b2,…,bk2,m(H+1), m(H+2)…,
mk1} and c1, c2 denote cycle times at the main line and
bypass sub-line respectively.

Step4: set u = u + 1
Step5: Calculate value of TIu using equation (5)
Step6: Update RTsu using equation (7) and repeat the

following sup-steps for each station (starting
from last station)

su s(u 1) uRT RT TI−= − (7)

 If RTsu ≠0 then set Qsu = 1
 If RTsu = 0 then

o If s = mk1 then:
 Remove the product from station mk1 and

put it in the output sequence (vector Y),
 g = g + 1

o Else if Q(s+1)u = 1 then set Qsu = 1 else
 if s = bk2 and a product type1 exists at

station mH for which RTsu = 0 then
according to unsynchronized situation
rules select the product with higher
priority (one of the product exists at
station bk2 or mH) and move it to the
station m(H+1) and set Qsu = 0 for the
selected station and set Qsu = 1 for the
other one (station bk2 or mH).

 If s = m1 then move the product exists at
station s to the next station (m2) and feed
the next product of sequence (vector X)
into the first station.

 If s = mH and a product type2 exists at
station s then move the product exists at
this station to the next station (b1).

 Else if s ≠ mH then mo ve the product
exists at station s to the next station
(s + 1).

Step7: If g = D stop the algorithm, otherwise go to
step3.

Exhaustive enumeration method: In order to obtain
the optimal solution for this problem, an exhaustive
enumeration method (EE) is developed. Being aware of
the discrete nature of the feasible solutions, EE
generates all the feasible solutions of MALSP-B. For
each solution which is generated from EE, event based
procedure is run and its objective function is calculated,
comparing the objective function values with previous
ones leads us to optimal solution at the final step of EE.
The outline of EE process used in this paper is
summarized as follows:

Step1: Let n = 0 (counter of feasible permutations) and
l = 0 (counter of active permutations)

Step2: Generate a random feasible solution
(permutation) and put it on the nth array of the
feasible solutions’ matrix and let n = n + 1

Step3: Select the lth permutation of the feasible
solutions’ matrix which is named “active”
permutation.

Step4: Consider the exchange between the elements i
and j in the active permutation. (i, j ∈{0, D}, i≠j)

For example:

 if this new permutation (created from exchange) is
different from n-1 previous permutations (located

a b b a
i j

World Appl. Sci. J., 6 (2): 168-181, 2009

173

 in the feasible solutions’ matrix), then put it on the
nth array of the feasible solutions’ matrix and let
n = n + 1, consider another duplex exchange in
the active permutation and repeat this sub step

 if all possible duplex exchanges are considered,
deactivate current active permutation and go to
step 5

Step5: If N
ii 1

D!
n

(d)!
=

=

∏
, stop; all of the feasible

solutions are gathered in the feasible solutions’ matrix.
Otherwise let l = l + 1 and go to step 3

Note that EE just produces feasible solutions.
Combining this algorithm and proposed procedure leads
to optimal solution which is shown schematically in
Fig. 3.

Combinatorial complexity: Finding production
sequences with desirable levels of both number of
products and their demands, is NP-hard as pointed out
by McMullen and Tarasewich [1]. Total number of
sequences (feasible solutions) for a mixed-model
sequencing problem having n products can be
computed using the general formula to compute the
number of permutations of a multi-set as follows:

n
ii 1

D!
Totalsequences

(d)!
=

=

∏
As mentioned before, to obtain the optimal solution

an exhaustive enumeration method is used. As the
problem increases in size, the number of feasible
solutions increases in an exponential fashion, thereby
attainment of optimal solutions becomes impractical for
large scale problems. Problems with a large number of
possible solutions usually cannot be solved to
optimality within a reasonable amount of time.

As a typical example in a problem with four
products and three unit of demand for each one, the
number of possible input sequences is equal to:

4
(4 3)!

Totalsequences 369600
(3!)
×

= =

Genetic algorithm: The GA is a stochastic search
technique. It can explore the solution space by using the
concept taken from natural genetics and evolution
theory. In classical Genetic algorithm the chromosomes
of the population are evaluated according to a
predefined fitness function, which is usually equal to a
straightforward and easy calculated objective function
but in our proposed GA the objective function of each
chromosome is calculated during the event base
procedure which is described in previous section. In
each generation of GA, first, population is selected
from the mating pool according to the selection
strategy, then for every chromosome of this population
the event based procedure is run to compute the fitness
value of that chromosome. The outline of the genetic
search process used in this paper is summarized as
follows:

1. Randomly generate an initial population of
chromosomes with a population size P.

2. Run event based procedure to evaluate each
chromosome in the population according to the
objective function.

3. Apply the Monte Carlo selection technique to
select parent chromosomes from the current
population. This is used for choosing randomly the
parents for crossover and mutation. In this
procedure first for every chromosome a random
number (between 0 and 1) generated, then
chromosomes for which this number is lower than
the mutation probability are selected for mutation,

Fig. 3: Flowchart of exhaustive enumeration method

Create a new feasible
solution

Run event-based
procedure

Objective function
evaluation

Are all feasible solutions checked?

Yes

No

Optimum

World Appl. Sci. J., 6 (2): 168-181, 2009

174

Fig. 4: Flowchart of GA optimization procedure

this procedure is repeated in order to select
chromosomes for crossover. Note that for a typical
chromosome both of mutation and crossover
operators can be applied.

4. Apply crossover and mutation operators to
generate the offsprings based on the values of
crossover and mutation probabilities (pc and pm,
respectively) and put them on the pool mating. A
similarity checking is used to prevent parents from
duplicating offsprings.

5. Use elitism strategy to fix the potential best
number of chromosomes by copying half of the
best chromosomes of both parent and offspring
population into the succeeding generation. Then
rest of the population is brought randomly from the
mating pool (including parents and offsprings).
Total number of chromosomes is kept constant for
computational economy and efficiency.

6. Check the pre-specified stopping criterion. If the
stopping criterion is reached, the search process
stops. Otherwise, proceed to the next generation
and go to step 2.

The flow chart of the GA optimization procedure is
shown in Fig. 4.

Chromosome encoding: The encoding of solutions to
a problem should ensure that all possible solutions can
be generated provided that chromosomes are generated
at random. For combinatorial ordering problems,
usually permutation encodings are used, because the
order of items can be most naturally modeled in this
way. Here, the order within the permutation is
interpreted as a sequence while scanning it from left to
right during the decoding. For our purpose, we used a
permutation of all products involved in an instance of a
sequencing problem. The order of products in the
permutation serves as a sequence of that product which
consecutively assembles a schedule for production.
Note that all permutations represent feasible input
sequence directly.

Crossover: Recombination plays a crucial role for the
GA performance. According to the widely accepted
design goal for crossover operators, information already

World Appl. Sci. J., 6 (2): 168-181, 2009

175

Fig. 5: Precedence preservative crossover

Fig. 6: Mutation crossover

existing in the parent solutions should be recombined
without introducing new information. In the following
we describe the Precedence Preservative Crossover
(PPX) which is illustrated in Fig. 5 for a problem
consisting of three products A, B and C with demands
equal to 3, 2 and 2 respectively.

The operator works as follows: A vector of length,

n
ii 1

D d
=

=∑
representing the number of products involved in the
problem is randomly filled with elements of the set
{1, 2}. This vector defines the order in which the
products are successively drawn from parent 1 and
parent 2. We can also consider the parent and offspring
permutations as lists, for which the operators ’append’
and ’delete’ are defined. First we start by initializing an
empty offspring. The leftmost product in one of the two
parents is selected in accordance with the order of
parents given in the vector. After a product is selected it
is deleted in both parents. Finally the selected product is
appended to the offspring. This step is repeated until
both parents are empty and the offspring contains all
products involved.

Mutation: This operator should alter a permutation
only slightly. The rationale behind this idea is that a
small modification in the permutation will result in a
small deviation of its fitness value only. In this way the
information newly introduced by a mutation has a

reasonable chance to be selected and accordingly
passed on into future generations. In our GA we alter a
permutation by first picking (and deleting) a product
before reinserting this product at a randomly chosen
position of the permutation (Fig. 6).

Parameter setting: In terms of genetic algorithm
performance, two measures are of interest: objective
function performance and CPU time. Objective
function performance implies a comparison of the best
objective function obtained via genetic algorithm and
the optimal solution obtained via exhaustive
enumeration method. CPU time here means a
comparison of required CPU time for the genetic
algorithm and the required CPU time for exhaustive
enumeration method. These algorithms were run on a
system with Pentium IV processor at 2.6 GHz under
Windows XP using 512 MB of RAM.

For tuning the GA for the mixed-model sequencing
problems, extensive experiments were conducted with
differing sets of parameters. At the end, the following
set was found to be effective in terms of genetic
algorithm performance. It should be noted that
changing these parameters may result in different
outcomes than those achieved in this research. The
Mutation, crossover and Elitism Probabilities and
Population Size were set to 0.2, 0.8, 0.5 and 30
respectively.

Population size parameter: In order to set a
reasonable value for population size a sample problem

World Appl. Sci. J., 6 (2): 168-181, 2009

176

Table 1: Data for problem P 0

Part i

Number of --
Problem Product i Type Demand solutions 1 2 3 4 5 6 7 8 9 10

P0 1 Type2 5 6.2 ×1014 5 7 1 6 6 4 2 6 2 4
2 Type1 5 6 3 6 4 4 0 6 6 5 0
3 Type2 5 7 3 6 2 3 2 4 5 7 2
4 Type1 5 2 4 5 5 1 4 6 2 5 4
5 Type2 5 2 7 0 0 0 1 7 5 7 3

Table 2: Sensitivity analysis for population size in example P 0

Population Average Best Time to Number
size objective objective solve (s) of runs

15 339.60 339.4 11 10
20 337.95 337.8 15 10
25 337.52 337.4 18 10
30* 335.42 335.4 22 10
40 336.03 336.4 29 10
50 336.11 336.8 37 10
100 336.26 335.8 80 10

Table 3: Sensitivity analysis for mutation and crossover probabilities

(Mutation, Average Best Time to Number
crossover) objective objective solve (s) of runs

(0.1, 0.9) 340.60 339.2 23 10
(0.2, 0.8)* 338.95 337.2 24 10
(0.3, 0.7) 339.52 338.4 22 10
(0.4, 0.6)* 337.62 337.4 22 10
(0.5, 0.5) 341.23 341.2 22 10
(0.6, 0.4) 340.79 340.5 23 10
(0.7, 0.3) 342.82 342.3 23 10
(0.8, 0.2) 342.99 343.0 25 10
(0.9, 0.1) 345.05 344.6 25 10

(P0) is considered. The proposed algorithm is run for
this sample problem for different values of population
size. Analyzing the results leads to near optimal value
for this parameter. Note that when the population size
increases, in each generation, more feasible solutions
are generated and this makes the algorithm capable to
search a bigger area with lesser iterations but at the
same time causes the algorithm to spend more time
because the need of more calculations.

Problem P0, is an assembly line with 5 products
and 10 parts in which k1, k2, the number of stations
located at main line and bypass sub-line, are equal to
10, 3, respectively also c1, c2, cycle times for main line
and bypass sub-line, are equal to 4,2, respectively. The
other common data are shown in Table 1.

A sensitivity analysis is done for population size
parameter and the results are shown in Table 2. Note

that algorithm is run 10 times for each value of
population size and the best and average objective
values are reported on the table.

As shown in Table 2, although the run time with
population size 30, is greater than the case of the other
population sizes such as 15, 20 and 25, but this
difference is not considerable. Since the population size
30 makes the algorithm capable to converge to the
optimal solution with sharper slope relative to other
population sizes thus in this paper 30 is selected as
population size. In the same way sensitivity analysis is
repeated for other samples with various dimensions. As
this expected the same results are obtained (Fig. 7).

Mutation and crossover parameters: In order to
obtain acceptable values for mutation and crossover
probabilities a sensitivity analysis has been done.
Because of the interaction effects between mutation and
crossover parameters, a simultaneous sensitivity
analysis is done for them using problem P0. The results
are shown in Table 3.

As shown in Table 3, the best values for mutation
and crossover probabilities are approximately equal to
0.4 and 0.6 respectively. Note that duplet (0.2, 0.8) is
also considered as another candidate for mutation and
crossover probabilities.

Computational experiments: Several test problems
were used to evaluate the GA in terms of performance
compared to optimality as well as performance in terms
of CPU time. The experiments are implemented in two
folds: first, for small-sized problems, the other for
large-sized ones. They cover a diverse set of mixed-
model sequencing problems, from the smallest problem
with 13860 solutions to the largest one with
2.181×10135 possible solutions. In all examples, W1 and
W2 are set to 1 Also cycle times for the main line and
bypass sub-line are set to 4 and 2 minute, respectively.

Small sized problem sets: These problems are
designed to validate the proposed GA.In these
problems, k1 = 7, k2 = 3 and H = 3. And other common
data are shown in Table 4. Computation results of

World Appl. Sci. J., 6 (2): 168-181, 2009

177

Fig. 7: Sensitivity analysis of population size for three problems with different dimensions

 (a) (b) (c)
Fig. 8: Convergence of proposed GA in P15, P16, P17

proposed GA against the optimum solution obtained
via enumeration exhaustive method are presented in
Table 5. The Results show that GA reaches to optimal
solution in some small sized problems. In other cases
converged to optimal solution in an efficient manner,
with deviation at most 2.4% (see column ∆ of Table 5).
Note that, for all cases proposed GA is run 10 times so
the best and average objective values for each case are
reported in the table.

Large sized problem sets: These problems are
designed to demonstrate efficiency of proposed GA in
large scale problems. In this problem set, number of
generation is set to 1000. And other common data are
shown in Table 6.

A comparison of genetic algorithm results and
complete enumeration is summarized in Table 7.
This table shows that for large-sized problems, our
proposed GA converges to optimal solution in an
efficient manner; in contrast, enumeration
exhaustive method can’t solve the problem with
a reasonable amount of time because the
number of feasible solutions increases in an exponential
manner and EE can not enumerate all of them less
than three days. Because of that, the best solution of
GA is compared whit the best solution of EE after
10 hours.

Discussing the convergence of proposed GA,
convergence graph for large sized problems 15, 16 and
17 are depicted in Fig. 8.

World Appl. Sci. J., 6 (2): 168-181, 2009

178

Table 4: Small-sized problems
Part i

Number of --
Problem Product i Type Demand solutions 1 2 3 4 5 6 7 8 9 10
P1 1 Type1 6 13860 4 2 1 3 5 2 2 0 6 2

2 Type2 4 6 7 2 7 2 7 0 4 2 2
3 Type1 2 1 4 3 7 2 6 7 6 0 0

P2 1 Type1 7 25740 4 2 1 3 5 2 2 0 6 2
2 Type2 4 6 7 2 7 2 7 0 4 2 2
3 Type1 2 1 4 3 7 2 6 7 6 0 0

P3 1 Type1 4 30240 6 4 3 5 7 4 4 2 0 4
2 Type2 4 7 1 4 1 3 1 2 6 4 4
3 Type1 4 3 5 5 0 4 0 1 0 2 2

P4 1 Type1 6 60060 5 4 2 5 6 4 3 2 7 5
2 Type2 4 1 3 5 2 5 3 3 7 5 5
3 Type1 3 4 7 6 2 5 1 2 1 3 4

P5 1 Type1 3 92400 7 5 0 1 6 6 4 2 7 2
2 Type2 3 4 6 3 6 4 4 0 7 6 5
3 Type1 2 0 0 3 6 2 3 3 4 5 7
4 Type2 3 2 3 4 6 5 1 4 7 2 5

P6 1 Type1 3 92400 5 7 4 4 1 4 2 7 5 4
2 Type2 2 1 3 1 2 2 0 7 6 1 5
3 Type1 2 0 0 3 6 0 3 4 5 0 1
4 Type2 3 2 3 4 6 2 4 2 7 2 0

P7 1 Type1 3 138600 4 0 7 6 5 4 4 4 4 2
2 Type2 1 6 0 3 4 5 2 3 4 6 5
3 Type1 4 2 3 4 6 5 0 7 6 5 2
4 Type2 1 1 2 6 0 3 4 5 1 2 3
5 Type1 2 2 3 4 6 5 2 3 4 6 5

P8 1 Type1 3 277200 3 6 4 4 0 7 6 3 6 4
2 Type2 2 3 6 2 3 3 4 5 3 6 2
3 Type1 1 0 0 3 6 0 3 4 5 0 1
4 Type2 2 2 3 4 6 2 4 2 7 2 0
5 Type1 3 1 3 5 2 5 3 3 7 5 5

P9 1 Type2 1 554400 2 3 3 4 5 2 3 3 4 5
2 Type1 4 3 6 0 3 4 3 6 0 3 4
3 Type2 1 2 3 1 3 5 2 5 3 3 7
4 Type1 3 3 6 4 1 3 5 2 5 2 4
5 Type2 3 7 5 0 1 6 6 4 2 7 7

P10 1 Type1 1 831600 7 5 0 1 6 4 2 1 3 5
2 Type2 3 2 3 3 7 5 0 1 6 6 4
3 Type1 4 7 5 0 1 2 3 3 4 4 2
4 Type2 2 4 6 3 6 3 6 0 3 6 7
5 Type1 2 0 0 3 6 4 6 2 4 1 4

P11 1 Type1 2 831600 4 2 3 4 2 1 3 5 2 2
2 Type2 2 6 3 6 7 5 0 1 6 4 2
3 Type1 1 1 4 6 4 6 3 6 4 6 7
4 Type2 3 4 2 3 0 0 3 6 2 1 4
5 Type1 2 6 3 6 7 5 0 1 6 4 2
6 Type2 1 1 4 6 4 6 3 6 4 6 7

P12 1 Type1 1 1663200 4 2 1 2 3 3 4 5 2 3
2 Type2 2 6 7 2 3 6 0 3 4 3 6
3 Type1 3 1 4 3 4 6 2 4 2 4 6
4 Type2 1 6 7 5 0 1 6 6 7 5 0
5 Type1 4 6 4 6 3 6 4 6 4 6 3
6 Type2 1 3 0 0 3 6 2 3 0 0 3

World Appl. Sci. J., 6 (2): 168-181, 2009

179

Table 5: Results of small-sized problems
Exhaustive enumeration GA

Problem Optimum CPUEE (s) Number of generations Best objective Average objective CPUGA (s) ∆%*

P1 147.90 703 100 147.90 147.90 1.0 0.00
P2 152.06 2707 100 152.06 152.06 1.5 0.00
P3 127.36 5458 100 127.36 127.51 2.5 0.00
P4 113.79 17813 100 113.79 113.79 4.0 0.00
P5 138.24 27538 100 138.24 139.04 5.0 0.00
P6 158.32 37456 200 158.32 160.92 6.0 0.00
P7 232.71 53368 250 233.50 238.20 7.0 0.34
P8 353.32 72521 300 355.52 356.29 18.0 0.62
P9 534.57 95047 (~1.1 days) 500 543.77 544.11 75.0 1.72
P10 287.75 121067 (~1.4 days) 500 288.78 291.09 180.0 0.36
P11 424.13 150691 (~1.7 days) 750 434.33 435.05 280.0 2.40
P12 555.01 184023 (~2.1 days) 1000 560.01 562.21 350.0 0.90

∆% =100×(GA’s best objective-Optimum)/Optimum

Table 6: Large-sized problems

Problem Product i Type Demand Number of solutions Number of parts Number of stations

P13 1 Type1 5 4.658×1011 10 10
2 Type2 10
3 Type1 15

P14 1 Type1 10 1.036×1019 15 15
2 Type2 15
3 Type1 20

P15 1 Type1 10 6.689×1037 30 30
2 Type2 15
3 Type1 20
4 Type2 25

P16 1 Type1 20 6.770×1098 40 30
2 Type2 25
3 Type1 30
4 Type2 35
5 Type1 40

P17 1 Type1 40 2.181×10135 40 30
2 Type2 40
3 Type1 40
4 Type2 40
5 Type1 40

Table 7: Results of large-sized problems

Exhaustive Enumeration GA
----------------------------------- ---

Problem Best objective after 10 hours Best objective Average objective CPUGA (s) Number of generations

P13 450.20 348.00 348.32 580 1000
P14 970.45 685.83 690.99 890 1000
P15 3125.33 2614.15 2629.01 1105 1000
P16 13353.28 9010.67 9053.42 3466 1000
P17 15475.19 11954.20 11995.20 5492 1000

World Appl. Sci. J., 6 (2): 168-181, 2009

180

The results show that proposed GA can converge
to the optimal solution approximately in 1000 iterations
even for large-sized problems.

CONCLUSION

When some different types of products are
manufactured at the mixed-model assembly line and
assembly times are significantly different among these
product types, the production efficiency usually reduces
due to the line stoppage. The variation in the assembly
times can be reduced by installing a bypass sub-line.
This paper investigates the mixed-model assembly line
sequencing problem with a bypass sub-line. Problem is
determining the sequence of all products in a way that
manager's objectives are met. The objective function of
the problem is a weighted sum of the two goals:
leveling the part usage rates and reducing the line
stoppage. The former objective is taken from the
literature and the latter is introduced in this paper. Also
some unsynchronized situations which are disregarded
in previous studies are considered. Due to difficulties
arise from these situations; we have to use rule-bases
approaches like event-based procedure. Because of
NP-hard nature of this problem, a meta-heuristic
algorithm based on genetic algorithm and next event
procedure is developed to solve the problem. Also a
sensitivity analysis is done to obtain near the best
values of proposed algorithm parameters. Since
mathematical modeling approaches are not applicable
in this specific problem, we use an exhaustive
enumeration method (optimization algorithm) to
calculate optimum solutions. Comparing these two
algorithms indicates that proposed meta-heuristic
dominate our optimization algorithm. To assess the GA
efficiencies, two sets of numerical examples one for
small-sized and the other for large-sized problems are
presented. Comparison of the results indicates that
proposed GA is able to find optimal solutions for small
sized problems and near optimal solutions for large-
sized ones, in a more reasonable time than optimization
algorithm.

Mixed model assembly line sequencing problem
with a bypass sub-line definitely doesn't come to an end
and the path is still open for researches to develop other
meta-heuristic algorithms and compare their results
with this paper. Also studying on unsynchronized
situations and using decision making techniques to
determine optimal rules for them is a promising area for
future researches.

REFERENCES

1. McMullen, P.R. and P. Tarasewich, 2005. A beam
search heuristic method for mixed-model
scheduling with setups. International Journal of
Production Economics, 96: 273-283.

2. Monden, Y., 1993. Toyota production system,
2nd edition. Institute of Industrial Engineers,
Norcross, GA.

3. Miltenburg, J. and G. Sinnamon, 1989. Scheduling
mixed-model multi-level just-in-time production
systems. International Journal Production
Research, 27: 1487-1509.

4. Miltenburg, J. and G. Sinnamon, 1992. Algorithms
for scheduling multi-level just-in-time production
systems. IIE Transaction, 24: 121-130.

5. Miltenburg, J. and G. Sinnamon, 1995. Revisiting
the mixed-model multi-level just-in-time
scheduling problem. International Journal of
Production Research, 33: 2049-2052.

6. Morabito, M.A. and M.E. Kraus, 1995. A note on
’scheduling mixed-model multi-level JIT
production systems ’. International Journal of
Production Research, 33: 2061-2063.

7. Steiner, G. and J.S. Yeomans, 1996. Optimal level
schedules in mixed-model, multi-level just in time
assembly systems with pegging. European Journal
of Operational Research, 95: 38-52.

8. Sumichrast, R.T. and E.R. Clayton, 1996.
Evaluating sequences for paced, mixed-model
assembly lines with JIT component fabrication.
International Journal of Production Research,
34: 3125-3143.

9. Sumichrast, R.T. and R.S. Russell, 1990.
Evaluating mixe d-model assembly line sequencing
heuristics for just-in-time production systems.
Journal of Operations Management, 9: 371-389.

10. Sumichrast, R.T., R.S. Russell and BW. Taylor,
1992. A comparative analysis of sequencing
procedures for mixed-model assembly lines in a
just-in-time production system. International
Journal of Production Research, 30: 199-214.

11. Yano, C.A. and R. Rachamadugu, 1991.
Sequencing to minimize work overload in
assembly lines with product options. Management
Science, 37: 572-586.

12. Tamura, T., H. Long and K. Ohno, 1999. A
sequencing problem to level part usage rates and
work loads for a mixed-model assembly line with a
bypass sub-line. International Journal of
Production Research, 60-61: 557-564.

13. Kubiak, W., 1993. Minimizing variation of
production rates in just-in-time systems: A survey.
European Journal of Operational Research,
66: 259-271.

14. Xiaobo, Z. and K. Ohno, 1997. Algorithms for
sequencing mixed models on an assembly line in a
JIT production system. Computer and Industrial
Engineering, 32: 47-56.

15. Xiaobo, Z., Z. Zhou and A. Asres, 1999. A not on
Toyota’s goal of sequencing mixed model on an
assembly line, Computers and Industrial
Engineering, 36: 57-65.

World Appl. Sci. J., 6 (2): 168-181, 2009

181

16. Tsai, L.H., 1995. Mixed-model sequencing to
minimize utility work and the risk of conveyor
stoppage. Management Science, 41 (3): 485-495.

17. Mansouri, S.A., 2005. A multi objective genetic
algorithm for mixed model sequencing on JIT
assembly line. European Journal of Operational
Research, 167 (3): 696-716.

18. Boysen, N., M. Fliedner and A. Scholl, 2009.
Sequencing mixed-model assembly lines: Survey,
classification and model critique.European Journal
of Operational Research, 192: 349-373.

19. Rahimi-Vahed, A. and A.H. Mirzaei, 2007. A
hybrid multi-objective shuffled frog-leaping
algorithm for a mixed-model assembly line
sequencing problem. Computers and Industrial
Engineering, 53: 642-666.

20. Kim, S. and B. Jeong, 2007. Product sequencing
problem in Mixed-Model Assembly Line to
minimize unfinished works. Computers and
Industrial Engineering, 53: 206-214.

21. Rahimi-Vahed, A.R., M. Rabbani, R. Tavakkoli-
Moghaddam, S.A. Torabi and F. Jolai, 2007. A
multi-objective scatter search for a mixed-model
assembly line sequencing problem. Advanced
Engineering Informatics, 21: 85-99.

22. Ding, F.Y., J. Zhub and H. Sun, 2006. Comparing
two weighted approaches for sequencing mixed-
model assembly lines with multiple objectives. Int.
J. Production Economics, 102: 108-131.

23. Xiaobo, Z. and K. Ohno, 1994. A sequencing
problem for a mixed model assembly line in a
JIT production system. Computer and Industrial
Engineering, 27: 71-74.

24. Bolat, A., 1994. Sequencing jobs on an automobile
assembly line: Objectives and procedures.
International Journal of Production Research,
32: 1219-1236.

25. Bard, J., E. Dar-El and A. Shtub, 1992. An analytic
framework for sequencing mixed model assembly
lines. International Journal of Production Research,
30: 35-48.

26. Inman, R. and R. Bulfin, 1991. Sequencing JIT
mixed-model assembly lines. Management
Science, 37: 901-904.

