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Recurrence Relation for Single and Product Moments of Record Values
from Erlang-truncated Exponential Distribution
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Abstract: Consider X, X, X,... be a sequence of independently and identically distributed random
variables with continuous cumulative distribution function F(x). In this paper, some recurrence relations for
single and product moments are derived for Erlang-truncated exponential distribution that are helpful in
finding the higher order moments from that of lower order moments.
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INTRODUCTION

A random variable X is said to have Erlang-
truncated exponential distribution [1], if its probability
density function is of the form

£(x)=p(1-e*)e "1 Lo < x < wp>0.250 (1)

The distribution function is

(1.2)

Let X, X5, X;,... be a sequence of independently
and identically distributed random variables with cdf
F(x). Set Y; =max(min){X;,X,.....X;} for I, then X; is

called an upper (lower) record value of {X;, i>1}, if

Yi> Y i>1(Y) < > 1)

It obvious from the definition that X; is an upper as
well as lower record.

Ahsanullah [2] have also derived the distributional
properties of the records by wusing the Lomax
distribution. Balakrishnan [5-7] have obtained the
recurrence relations for moments of record values for
Gumbel distribution. Some moment properties of the
records have been given by Ahsanullah [3, 4].
Nevzorov [8] have given a comprehensive review of the
mathematical foundation of the records.

Ahsanullah [4] has given the distribution of k-th
upper record; Xy as:

Fon (x4) :ﬁf(xk)[fz(xk)]k*l (1.3)

where

R(x) = —ln{l—F (x )} .

The joint distribution of k-th and m-th upper
records; Xy and Xy can be obtained by using the
following expression given by Ahsanullah [4]:

1
fimn (Xi>Xm ) =m
r(x)f () [R(x)] (1)
[R(xm )= R (x)]" 7

with 1(x) =R’ (X).

In this paper, some recurrence relations for single
and product moments are derived for Erlang-truncated
exponential distribution in section 2 and 3 respectively.
Some concluding remarks are given in section 4.

RECURRENCE RELATION FOR
SINGLE MOMENTS

It is easy to note from (1.1) and (1.2) that
xf(x) =[—ln(1—F (x))}(l—F(x)) 2.1

The relation in (2.1) will be used to establish
recurrence relations for moments of the upper record
value from Erlang-truncated exponential distribution.

Corresponding Author: Muhammad Mohsin, Department of Mathematics, COMSATS Institute of Information Technology,

Lahore, Pakistan



World Appl. Sci. J., 6 (2): 279-282, 2009
Theorem 2.1: Forn>1,k=0,1,2,......... andk<n, RECURRENCE RELATIONS
FOR PRODUCT MOMENTS
k k
E(XU(n+1)):(n_k)E(XU(n)) o .
In this section some recurrence relation for product

Proof: The kth moment of the nth upper record is moments for Erlang-truncated exponential distribution
defined as: have been developed.

Theorem 3.1: For Km<n, r, s=0,1, 2,.. and

k _ 1 r k n—1
E(XU(“))_EJ-X [R(x)] f(x) dx. 2.2) m>(r+ 1),
0
- 1
Using (2.1) in (2.2), we have E(Xf}{;}rl) ) = m-(r+1) E(X{;’(lm) XSU(H))
w And
1 k-1 n
E(Xk ]: Jx ~In(1-F(x))] (1-F(x))dx (2.3)

u)) T n) 0 [ ( )J ( ) Forn>m+2, r,s=0,12,......... and m > (r+1)
Integrating (2.3) by parts taking X*' as integrating il s m—(r+1) il .
and rest of integrand for differentiation, we obtain: E(XU(m) Xu(n)) T E (XU(mH) XU(n—l))

k k .
E(XU(ml)) =(n-k) E(XU(n)) sk<n Proof: We have
E( r+1 J’J.XHI SmandXdy
Oy

=) “ P11 ( ))}mﬁl[—ln(l—F (y))+ln(1—F(X))Tml%f(y)dxdy.(&l)

e (m)rl(n_m) J’ j xry (1= (x))]" [~in(1-F (y))+ln(l—F(x))JnmI%f(y)dxdy.

Substituting (2.1) in (3.1) we get

E(X{jr(lm) ij(n)) = m{jxr ys[—ln(l—F ( x))}m [—ln (1 - F(y)) + ln(l -F (x))}n_m - f(y) dxdy.

ZWIYS £(y)1(y) dy. (32)
Where

n-m-|

y)= jxr [~in(1-F(x))]" [-n(1-F (y))+m(1-F(x)) " ax (33)

Case-1.Ifn=m+ 1.

Integrating (3.3) by parts taking X' as integrating and rest of integrand for differentiation, we obtain:

I(y)—{—{—]n(l—F(y) " ”1} ITXM (1) L g

r+1
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Substituting the value of I(y) in (3.2) and simplifying we get

n:n T]ngl S ln 1- F ))TH f(x) f(y) dx dy

1—F(x)

](3 ys+r+1 )Jmf(y)dy

or

B(xtia )= e (X5 Xuin) (34)

Case-2: When n>m+2,

Again, integrating (3.3) by parts taking X" as integrating and rest of integrand for differentiation, we obtain:

(0= 2 [ [l () (a7 9 -

© 3.5)
fx n m-— 1 o+ n-m-2  f(x
1-%5 jx ==t ()"~ (1= F(y)) + n (1 - F(x)) IJ_F—(XL)dX.
y
Putting (3.5) in (3.2), we get
r+ s 1 m 0 r+1s m-—1 n-m-1
E(X L X )) NORCE E'EJ-X ly [—ln(l—F(x)ﬂ [—]n(l—F (y))+n(1-F (x))}
y
£(x) (n=m=1)T( 11 s m
I_F(X)f(y) dx dy—TJ;jx ! [ In(1-F (x ))J (3.6)
y
n-m-2 f(x
[-In(1-F (y))+1n(1-F(x))] 1_F( (l)f( ) dxdy.:l
E(XX b ) = s ) E(X Ui Xt (n))—(r—rfl) B(XUmet) Xt o) .
E(Xr+(l )XS( )) ( ) E(XrJr(lerl) XSU(nfl))’ I‘,S>O.
Corollary: From (3.4) substituting the value of E(Xr[}r(1 )X%(n)) in (3.7), we get
2
S+r+ m—(r+l T+ s
E(XU(mil)):{ I(n+ )} E(XU(lm+1) XU(n—l)) (3.8)
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CONCLUSION

The recurrence relations for single and product
moments of the record statistics for the Erlang-
truncated exponential distribution are derived in this
paper. Recurrence relations are useful to characterize
the distribution and to reduce the number of operation
necessary to obtain a general form for the function
under consideration. It can be hoped that following the
same procedure researcher may derived the recurrence
relation for other continuous distributions.
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