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Abstract: In the manufacturing processes, quantities like the proportion of defective units in a production 
lot may not be precisely known and most of the times the practitioners have to compromise with some 
imprecise (approximate) values. Prior knowledge of such quantities is required to evaluate the quality of a 
produced lot. In this paper, the properties of single sampling plan under situations involving both 
impreciseness and randomness are considered. Using the Theory of Chance due to Liu [6], the process of 
drawing an Operating Characteristic curve and the issue of identifying optimal sampling plans are also 
addressed for fuzzy random environment.
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INTRODUCTION

Statistical Quality Control is one of the oldest
branches of Statistics which finds wide usage by
practitioners in manufacturing industry. Acceptance
sampling is a vital branch of study in SQC. While 
applying the theoretical developments related to
Acceptance Sampling in real life situations quite often 
problems of different kinds are faced by practitioners. 
For example, while drawing Operating Characteristic 
(OC) curves associated with a given sampling plan one 
need to have prior knowledge about the proportion of 
defective units in the lot so that probabilities of
acceptance can be evaluated. However, in real life
situations rarely those values are known and in such 
cases practitioners rely either on their past experience 
or they take the opinion of experts. Hence such
assumed values are likely to be only approximate and 
they are bound to be of imprecise nature. Hence it is 
meaningful to treat such parameters as fuzzy quantities.
While designing sampling plans, specifically single 
sampling plans, it is well known that probability
distribution plays a crucial role. Since in the
conventional probability distributions the parameters 
are  assumed to be precise values, difficulties arise
when the parameters become imprecise. Hence one
needs a totally new approach in designing of sampling 
plans. In this paper, the Theory of Chance due to Liu 
[1] is used to explore the possibility of introducing a 
sampling plan suitable for a situation having both
randomness and impreciseness. It is pertinent to note 
that the problem of designing sampling plans under
fuzzy environment has been initially studied by
Kanagawa and Ohta [2]. The application  of fuzzy set 

theory in various contexts under SQC has been
considered by many including Ohta and Ichihashi [3], 
Kanagawa et al. [4], Raz and Wang  [5], Wang  and
Raz  [6]  and Hryniewicz [7]. For   a   recent   review on 
articles related to applications of fuzzy set theory in 
SQC one can refer to Noori et al. [8] and Hryniewicz 
[9]. This review work clearly highlights majority of the 
works are related to the theory of control charts for 
dealing with imprecise data. This paper is devoted to 
the Theory of Acceptance Sampling. The organization 
of  the  paper  is  as  follows.  The second section 
briefly reviews Chance theory. The third section
describes binomial distribution involving fuzzy
parameter  which is used in making an in depth study 
on the sampling plan developed in this paper. The
fourth section addresses the problem of determining 
optimum single determining sampling plans under
random  situation  involving  impreciseness.  The
theory considered in this paper is illustrated
numerically.

CHANCE THEORY

The introduction of Chance theory requires an
understanding of the Credibility theory which provides 
the foundation for the introduction of fuzzy variables 
and Probability theory.

Credibility theory:  Let Θ be a nonempty set and P be 
the power set of Θ. Each element of P is called an event.
For every event A, we associate a number denoted by 
Cr {A}, which indicates the credibility that A will 
occur. In credibility theory the following four axioms 
are accepted.
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Axiom 1: (Normality) Cr (Θ) = 1

Axiom 2: (Monotonicity) Cr (A)≤Cr (B) whenever
A⊂B

Axiom 3: (Self duality) Cr (A)+Cr (A c)  = 1 for any 
event A

Axiom 4: (Maximality) Cr (UiAi) = SupiCr (Ai) for any 
events {Ai} with SupiCr (Ai)<0.5

Credibility measure: The set function Cr is called a 
credibility measure if it satisfies the normality,
monotonicity, self-duality and maximality axioms

Credibility space: Let Θ be a nonempty set, P be the 
power set of Θ and Cr a credibility measure. Then the 
triplet (Θ, P, Cr) is called a credibility space.

Fuzzy variable: A fuzzy variable is a measurable
function from a credibility space (Θ, P, Cr) to the set of 
real number

Membership function:  Let ξ be a fuzzy variable on the 
credibility space (Θ, P, Cr). Then its membership
function is derived from the credibility measure by 

{ }{ }(x) 2Cr x 1,xµ = ξ = ∧ ∈ℜ

Credibility distribution: The credibility distribution 
Φ: ℜ→ [0,1]   of   a   fuzzy  variable ξ  is  defined  by 
Φ (x) = Cr {θ ∈ Θ|ξ(θ)≤x}

Probability theory: Let Ω  be a nonempty set and A be 
the power set of Ω . Each element of A is called an 
event. For every event A, we associate a number
denoted by Pr{A}, which indicates the probability that
A will occur. In probability theory the following three 
axioms are accepted.

Axiom 1: (Normality) Pr (Ω) = 1 

Axiom 2: (Nonnegativity) Pr (A)≥0 for any event A

Axiom 3: (Countable additivity) 

i i
ii

Pr( A ) Pr(A )=∑

for every countable sequence of disjoint events {Ai}

Probability measure: The set function Pr is called a 
probability measure if it satisfies the normality,
nonnegativity and countable additivity axioms.

Probability space: Let Ω  be a nonempty set, A be the 
power set of Ω  and Pr a credibility measure. Then the 
triplet (Ω , A, Pr) is called a probability space.

Random variable: A random variable is a measurable 
function from a probability space (Ω , A, Pr) to the set 
of real numbers.

Probability distribution:  The probability distribution 
Φ: ℜ → [0,1]  of  a  random  variable ξ  is  defined  by 
Φ (x) = Pr {ϖ ∈Ω |ξ(ω)≤x}.

Chance  theory:   Using  the  above  definitions  related 
to Credibility and Probabil ity spaces, Liu [1] developed 
ideas relevant to handle situations where both
impreciseness  and  randomness  play  simultaneous 
roles in the given system. The hybrid development 
based on credibility and probability space has been 
named as Chance theory. The following definitions are 
due to Liu [1].

Chance space: Suppose that (Θ, P, Cr) is a credibility 
space and  (Ω , A, Pr) is a probability space. The
product (Θ, P, Cr)× (Ω , A, Pr) is called a chance space.

Let   (Θ, P, Cr)× (Ω , A, Pr)   be   a   chance space.
A subset Λ⊂Θ×Ω  is called an event if Λ(θ)∈A for 
each θ∈Θ

Chance measure: Let (Θ, P, Cr)× (Ω, A, Pr) be a 
chance space. Then a chance measure of an event Λ is 
defined as:

{ } { }{ } { } { }{ }

{ } { }{ } { } { }{ }c

sup Cr Pr ( ) ifsup Cr Pr ( ) 0.5
Ch( )

1 sup Cr Pr ( ) ifsup Cr Pr ( ) 0.5
θ∈Θ θ∈Θ

θ∈Θ θ∈Θ

 θ ∧ Λ θ θ ∧ Λ θ <


Λ = 
− θ ∧ Λ θ θ ∧ Λ θ ≥



To describe a quantity with both fuzziness and 
randomness, the concept of hybrid variable is used
which is defined as follows.

Hybrid variable: A hybrid variable is a measurable 
function from a chance space (Θ, P, Cr)× (Ω , A, Pr) to 
the set of real numbers. That is, for any Borel set B of 
real numbers, {ξ∈B} = {(θ ,ϖ)∈Θ×Ω |ξ(θ ,ω)∈ B} is an 
event.

Liu [1] has identified five different approaches for 
defining Hybrid variable. The following is the model 
(Model IV of Liu [1]) which will be used in our further 
discussion. This model is suitable for dealing with
situations where the parameters involved in a given 
probability distribution are fuzzy by nature. The model 
proposed by Liu is explained below
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Let ξ be a random variable with probability density 
function φ (x;θ) where θ is a fuzzy variable. Clearly ξ is
a hybrid variable and if µ is a membership function 
associated with θ then it has been shown by Qin and 
Liu [10], for any Borel set B of real numbers, the
chance Ch (ξ∈B) is given by:

c

B

B

B

B

( )
sup min (x, )dx

2

( )
ifsup min (x, )dx 0.5

2
Ch( B)

( )1 sup min (x, )dx
2

( )
ifsup min (x, )dx

2

θθ∈Θ

θθ∈Θ

θθ∈Θ

θθ∈Θ

 µ θ   ∧ φ θ  
   

 µ θ   ∧ φ θ <     ξ∈ =
 µ θ  − ∧ φ θ     
 µ θ   ∧ φ θ  

   

∫

∫

∫

∫  0.5












 ≥


Chance    distribution:     The    chance   distribution
Φ: ℜ→[0,1] of a hybrid variable ξ is defined by 

{ }(x) Ch ( , ) | ( , ) xΦ = θ ω ∈ Θ × Ω ξ θ ω ≤

Chance density function: The chance density function 
φ: ℜ → [0,∞] of a hybrid variable ξ is a function such 
that

x
(x) (y)dy,  x

−∞
Φ = φ ∀ ∈ℜ∫  and (y)dy 1

∞

−∞
φ =∫ where

Φ is the chance distribution of ξ.
The definitions presented are relevant for further 

discussion made in this paper. For more detailed and 
exhaustive discussion one can refer to Liu [1].

HYBRID BINOMIAL DISTRIBUTION

Let ξ be a discrete random variable having
Binomial distribution with probability of success θ be a 
fuzzy variable with triangular membership function.
That is, the pdf of ξ and the membership function of θ
are respectively given by 

n
x n x

x
(1 ) , if x 0,1,2,....n

(x)
0   otherwise

− θ − θ = φ =  


and
a

, if a b
b a
b( ) , if b c
c b
0   otherwise

θ − ≤ θ ≤ −
− θµ θ = ≤ θ ≤
−




Clearly ξ is a hybrid version of Binomial distribution. 
The chance values associated with hybrid binomial 

distribution are computed using the expression.

Table 1: Chance distribution values
r Ch (ξ = r) Ch (ξ ≥ r) Ch (ξ ≤ r) 
0 0.07886 1 0.007886
1 0.66812 0.992114 0.072109
2 0.217659 0.927891 0.258348
3 0.416353 0.741652 0.565266
4 0.434734 0.434734 1

n
r n r

ra b

n
r n r

ra b

n
r n r

r

a b

( )sup min (1 )
2

( )
if sup min (1 ) 0.5

2
Ch( r)

( )
1 sup min 1 (1 )

2

( )if sup min
2

−

θ≤θ≤

−

θ≤θ≤

−

θθ∈Θ

θ≤θ≤

 µ θ   ∧ θ −θ       
 µ θ   ∧ θ −θ <       ξ = =
 µ θ     − ∧ − θ − θ          

µ θ


n
r n r

r
(1 ) 0.5−











    ∧ θ −θ ≥       

It is to be mentioned here that unlike binomial 
probabilities theses quantities can not be calculated in a 
straight forward manner. Hence one has to use some 
high end tools like evolutionary algorithms. In this 
work, Genetic algorithm is used to compute the chance 
values for various choices of the parameters in the 
binomial  distribution  and  the  membership  function. 
In the genetic algorithm, initial population of 50
chromosomes each representing a point in the solution 
space is considered. The process of selection has been 
implemented using Roulette wheel selection and single 
point cross over as suggested by Liu [1] is adopted.
Further randomized bidirectional mutation has been
performed. In order to reach the solution 1000
generations have been considered. 

Illustration 1: Assume that ξ~B(4,θ) where
θ~Triangular (0.7, 0.8, 0.9)
In this case

0.7 0.9

( )Ch( r) sup P( r ) , r 0,1,2,3,4
2 θ

≤θ≤

µ θ ξ = = ∧ = 
 

Where
0.7

   if 0.7 0.8
0.1( )

0.9     if 0.8 0.9
0.1

θ − ≤ θ ≤µ θ =
− θ ≤ θ ≤


and

4
r 4 r

r
(1 ) if r 0,1,2,3,4

P(r )
0  otherwise

−

θ

 θ − θ = =  


Table 1 gives chance values of different kinds for 
various choices of r.
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Table 2: Comparisons of Chance and Probability values
Chance of Probability of Percentage

a b|pd c acceptance Acceptance deviation
0.005 0.01 0.015 0.992442 0.998153 0.572163
0.015 0.02 0.025 0.961033 0.979765 1.911895
0.025 0.03 0.035 0.900000 0.929537 3.177643
0.035 0.04 0.045 0.814601 0.845989 3.710267
0.045 0.05 0.055 0.713862 0.738317 3.312317
0.055 0.06 0.065 0.607602 0.619594 1.935441
0.065 0.07 0.075 0.501847 0.501847 5.02E-05
0.075 0.08 0.085 0.402941 0.393763 2.330837
0.085 0.09 0.095 0.315940 0.300280 5.215159
0.095 0.10 0.105 0.240918 0.223187 7.944411
0.105 0.11 0.115 0.179974 0.162066 11.05014
0.115 0.12 0.125 0.130567 0.115198 13.34097

The hybrid binomial distribution is suitable for 
dealing with situations similar to those explained in the 
introductory section of this paper. The details related to 
Single Sampling and the way in which parameters 
related to such a sampling plan in the presence of both 
impreciseness and uncertainty are explained in the
following Section.

HYBRID SINGLE SAMPLING PLAN

The single sampling plan for attributes is explained 
below. Consider a lot consisting of N units. Take a 
random sample of size n and count the number of 
defective units in the lot. If the number of defective 
units   d   in   the   sample   is   less  than  or  equal  to  a 
predetermined value c then the lot will be accepted else 
it will be rejected as a bad lot. If the lot size N is very 
large then the number of defective units in the sample d 
is a binomial random variable. When the proportion of 
defective units in the lot is not known precisely and is 
an uncertain value, we can treat the distribution of 
defective units as hybrid binomial distribution. In our 
discussion, we shall assume that the proportion of
defective units is a fuzzy variable with triangular
membership function. Hence the expression given
Section 3 can be used for computing the Chance values
for various choices of n and c. The Operating
Characteristic Curve for the single sampling plan
described can be drawn by using the Chance
distribution. The chance of the hybrid variable d taking 
a value less than or equal to r is given by 

r

i 1

Ch(d r) Ch(d i)
=

≤ = =∑

where  Ch (d = i) can be computed using the expression 
given in Section 3. Using these credibility values one 

can draw the operating characteristic curve for the
single sampling plan under the imprecise setup. The
following example makes use of hybrid binomial
distribution to draw the OC Curve. 

Consider  the  Single  Sampling  Plan  n  =  52 and 
c = 3. Table 2 gives Chances of acceptance computed 
using hybrid binomial distribution for different choices 
of lot proportion of defective units. It is assumed that 
the proportion of defective units is explained through 
triangular membership functions. The  first  three
columns  of  the  table gives (a, b, c) values associated 
with the triangular membership function of the fuzzy 
variable pd, denoting the  proportion  of  defective  units 
in the lot. The fourth column gives the chance of
acceptance under the imprecise situation and the fifth 
column gives the probability of acceptance for the crisp 
situation where the proportion of defective units is 
taken as pd. The last column of the table gives the
percentage deviation from probability of acceptance
one has while obtaining chance of acceptance. The 
percentage deviation is computed on multiplying the 
ratio of absolute difference between the chance of
acceptance and probability   of   acceptance   to chance 
of acceptance by 100. Figure 1 is a diagrammatic
representation of the information contained in Table 2.

Determination of sampling plan: Effective
implementation of a single sampling plan requires
appropriate values for the sample size n and the
threshold value c. The values of n and c are determined 
for specified choices of α, β, p1 and p2, where α and β
are  respectively producer’s risk and consumer’s risk. In 
the imprecise situation, we choose the values of n and c 
so that the following two conditions are two satisfied: 

(i)
1PCh (d c) 1≤ ≥ − α

(ii)
1pCh (d c)≤ ≤ β
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OC Curve Single Sampling Plan
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Fig. 1: Operating characteristic curves

An empirical study carried out on the behavior of 
the OC curve drawn using chance distribution clearly 
established the following properties:

For fixed p and c, Chp (d≤c) is a decreasing function of n
For fixed n and p, Chp (d≤c) is an increasing function of c
For fixed n and c, Chp (d≤c) is a decreasing function of p

Hence the iterative procedure suggested by
Guenther [11] can be used to determine the values of n 
and c

Iterative procedure: The iterative procedure is as
follows:

Step 1: Set c = 0.

Step 2: Find the largest n, say nL, such that Chp1

(d≤c)=1 - a (this condition is satisfied for all n=nL).

Step 3: Find the smallest n, say nS, such that Chp2
(d≤c)=ß (this condition is satisfied for all n=nS).

Step 4: If nS=nL, then the optimum plan is (nS, c); 
otherwise increment c by 1 [here nS is the minimum
size that will satisfy the conditions (iii) and (iv)].

Step 5: Repeat the Steps 2, 3 and 4 until an optimum 
plan is obtained.

On using the above iterative procedure, optimal 
sampling plans are determined for a wide range of p1
and  p2 with  specified  producer’s  and  consumer’s 
risks. Table 3 gives some single sampling plans
obtained   using   the   above iterative procedure when 
p1,   producer’s   quality   level   and p2, the customers 
quality level are triangular fuzzy variables. For example, 
(125,2)  is the optimal sampling plan as given by the 
above  iterative  procedure when the consumer’s quality

Table 3: Hybrid Sampling Plans

Producer’s quality level (p1)
Consumer’s ---------------------------------------------------------
quality level (p2) (0.004,0.005,0.006) (0.009,0.010,0.11)

 (0.04,0.05,0.06)    (125,2) (218,5)
(0.05,0.06,0.07)    (100,2) (151,4)
(0.06,0.07,0.08)    (84,2) (105,3)
(0.07,0.08,0.09)    (73,2) (91,3)
(0.08,0.09,0.10)    (64,2) (80,3)

level is a triangular fuzzy variable defined on
(0.04,0.05,0.06) and producer’s quality level is another 
triangular fuzzy variable defined on (0.004,0.005,0.006).

CONCLUSION

Thus in this paper, the way in which the Chance 
theory can be used to solve difficulties one faces in the 
form of impreciseness arises in Statistical Quality
Control. The way in which Operating Characteristic
Curves are drawn using the concept of Chance theory is 
also illustrated. Further the question of determining an 
optimal single sampling plan is also considered.
Specific single sampling plans are also obtained to 
illustrate the theory discussed in this paper.
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