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Abstract: Thermal effects on Rayleigh wave speed in transversely isotropic medium are studied. A 
formula for the speed is derived first time in the said material. The speed of waves in some model 
transversely isotropic materials is calculated and is compared with the speed of the waves which propagate 
without thermal effects. It is observed that two Rayleigh waves propagate in the material under thermal 
effect. One wave propagates with the speed of the wave which propagates without thermal effect and the 
other one propagates with some higher speed. 
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INTRODUCTION

The theory of irreversible thermodynamics for an 
elastic material was established by Biot [1]. His
coupled equations for thermo -elastic waves in an
isotropic material were solved by Deresiewicz [2],
Lessen [3], Chadwick and Sneddon [4] and Chadwick 
[5] and in a transversely isotropic medium by Chadwick 
and Seet [6]. Thermo -elastic Rayleigh waves were
studied by Chadwick [5] in isotropic material. In this 
article we have studied the thermo -elastic Rayleigh 
waves in transversely isotropic conducting material
using the uncoupled theory of thermodynamics in non-
steady temperature field case only. 

We have observed that two Rayleigh waves
propagate in transversely isotropic material under
thermal effect. One wave propagates with the same
speed as that of the wave which propagates without 
thermal effect and the other one propagates with some
higher speed.

BASIC EQUATIONS AND INEQUALITIES

Consider a semi-infinite stress-free surface of a 
homogeneous heat-conducting elastic material which is 
transversely isotropic in both elastic and thermal
response and we choose a system of rectangular
Cartesian  coordinates  x1,  x2,  x3  in  such a way that 
x3-axis (axis of symmetry) is normal to the boundary 
and the body occupies the region x3≤0.

We consider a plane harmonic wave in x1-direction
in x1x3-plane with displacement components (u1, u2, u3)
such that

i i 1 3 2u u ( x , x , t ) , i 1 , 3 , u 0= = = (1)

Then by using the relations [7]

11 11 1,1 13 3,3 1

33 13 1,1 33 3,3 2

13 44 1,3 3,1

c u c u
c u c u

c (u u )

σ = + − β θ

σ = + − β θ

σ = +

(2)

and by following Chadwick and Seet [6 ] the linearized 
equations of motion in the absence of body forces and
heat supply are

11 1,11 13 3,31 44 1,33 3,13 1 ,1 1

44 1,31 3,11 13 1,13 33 3,33 2 ,3 3

c u c u c (u u ) u

c (u u ) c u c u u

+ + + −β θ = ρ

+ + + − β θ = ρ




(3)

The non-steady temperature field is governed by 
the following equation of heat conduction [7]

1 ,11 2 ,33 vcκ θ + κ θ = ρ θ (4)

where θ   is   the  temperature  change  measured  from
a natural reference configuration of the material in
which the density and temperature have the uniform
values ρ and T0 respectively. The comma notation is 
used for partial derivatives with respect to x1, x3 and a 
dot denotes  a  partial  differentiation  with  respect to 
the  time  variable t. The material constants appearing 
in the equations (1) and (2) are five independent
isothermal linear elasticities c11,  c12,  c13,  c33,  c44, the 
specific heat at constant deformation cv, the two
independent   first  temperature   coefficients   of  stress,
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β1, β2 and the two independent linear thermal
conductivities κ1, κ2,; where 

1 1 11 12 2 13 2 1 13 2 33(c c ) c , 2 c cβ = α + + α β = α + α

α1, α2, are the two independent linear coefficients of 
thermal expansion and it can be proved that κ1≥0, κ2≥0
and of course, ρ>0, T0 > 0. We assume in addition that 
cv >0 and that the isothermal linear elasticities are
components of a positive definite fourth order tensor. 
Necessary and sufficient conditions for the latter
requirements are [6]

2 2 2
11 11 12 44 33 11 12 13c 0, c c , c 0, c (c c ) 2c> > > + > (5)

The boundary conditions of zero traction are 

3i 30 , i 1,3 ontheplane x 0σ = = = (6)

Usual requirements that the displacement and the 
stress components decay away from the boundary
implies

i ij 3u 0 , 0 (i,j 1,3) as x→ σ → = →−∞ (7)

SECULAR EQUATION

By following Pham and Ogden [8] and Chadwick 
[5] we may assume; 

j j 1

1 3

u (y)exp[ik(x ct)] , j 1, 3

k (y)exp[ik(x ct)] wherey kx

= ϕ − =

θ = ψ − =
(8)

where k  is the wave number, c is the wave speed, ϕj, ψ
are the functions to be determined.
Substituting Eqs.(8) in (3) and (4) we have

2
11 1 13 44 3 44 1 1

2
44 3 13 44 1 33 3 2

2 1 V

( c c ) i(c c ) c i 0

( c c ) i(c c ) c 0
k ( k i c c) 0

′ ′′ρ − ϕ + + ϕ + ϕ − β ψ =

′ ′′ ′ρ − ϕ + + ϕ + ϕ − β ψ =
′′κ ψ − κ − ρ ψ =

(9)

The boundary conditions (6) and (7) may be written as

13 1 33 3 2

1 3

ic c k (y) 0
i 0

′ϕ + ϕ − β ψ =
′ϕ + ϕ =

  on the plane, y=0 (10)

       and j j, , , 0, j 1,3 as y′ ′ϕ ϕ ψ ψ → = →−∞ (11)

Imposing the conditions (11), we assume from (9) 

1 1 2 3

3 1 1 2 2 3 3

3 3

(y) Aexp(sy) Bexp(s y ) Cexp(s y )
(y) Aexp(sy) Bexp(s y) Cexp(s y )
(y) Cexp(s y)

ϕ = + +

ϕ = α + α + α
ψ = γ

(12)

where s1, s2, s3 have positive real parts and 

2 3
2 11 1 13 44 j 44 2 j

j 2 2
1 33 2 13 44 j 1 44

i[{ ( c c ) (c c )}s c s ]
a ; j 1,2,3

{ c (c c )}s ( c c )
β ρ − +β + + β

=− =
β −β + +β ρ −

4 2 2
33 4 4 3 33 11 44 44

2 2 2 2
13 44 3 11 44

3 2 2
1 33 2 13 44 j 1 44

c c s [c ( c c ) c ( c c )

(c c ) ]s ( c c )( c c )
{ c (c c )}s ( c c )

+ ρ − + ρ −

+ + + ρ − ρ −
γ = −

β −β + + β ρ −

In Eqs. (12) s1
2, s2

2 are the roots of the equation

4 2 2 2 2
33 44 33 11 44 44 13 44

2 2
11 44

c c s [c ( c c ) c ( c c ) (c c ) ]s

( c c )( c c ) 0

+ ρ − + ρ − + +

+ ρ − ρ − =
(13)

having the following relations

2 2 2
2 2 33 11 44 44 13 44

1 2
33 44

2 2
2 2 11 44

1 2
33 44

c ( c c ) c ( c c ) (c c )s s
c c

( c c )( c c )
s s

c c

ρ − + ρ − + ++ =−

ρ − ρ −
=

(14)

 and 2 1 V
3

2

k i c c
s

k
κ − ρ

=
κ

(15)

Substituting the solutions (12) into the boundary 
conditions (10) and the thermal boundary condition [5] 

h 0
y
∂θ

+ θ =
∂

(16)

on the plane, y=0
where h is non-negative thermal constant, we obtain

13 3 3 1 1 13 3 3 2 2 2 3 3

1 1 2 2

3

(ic c s )A (ic c s )B kCexp(s y ) 0
(s i )A (s i )B 0
k(s h)C 0

+ α + + α − β γ =

+ α + + α =
+ =

(17)

The last equation of Eqs. (17) implies C=0 (because
if C ≠ 0, then absurd values of h and c are obtained.)
Therefore, from (17) we obtain

13 3 3 1 1 13 33 2 2

1 1 2 2

(ic c s )A (ic c s )B 0
(s i )A (s i )B 0

+ α + + α =
+ α + + α =

(18)

The condition of consistency between these two 
homogeneous equations is
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1 3 3 2 13 44 13 1 33 2 1 3 2 2 2 2 2
1 2 1 1 3 44 1 33 2 13 1 22 2

33 2 11 1 13 44 33 4 4 1 2 44

2 2 2
2 11 1 13 44 33 1 13 2 11 13

{ c (c c )}[c { c c }
s s c ( c c )( c c )(s s )

c { ( c c ) (c c )}] c c ( c c )

{ ( c c ) (c c )}[c { ( c c ) ( c c )} c {

β − β + β −β −   + β ρ − β −β + + 
β ρ − + β + + ββ ρ −  

β ρ − + β + β ρ + +β ρ − − β{ }2
1 3 3 2 13 44 1 2 13 4 4 44 1 2

3 3 2 2 2 2 2 2 2
2 33 4 4 1 33 2 13 1 2 2 33 44 1 13 2 11 1 2 1 2 1 1 3 44 1 13 2 11

c (c c )}] c c ( c c ) s s

c c ( c c )s s c c { ( c c ) ( c c ) } s s ( s s ) c ( c c ){ ( c c ) ( c c ) ] 0

− β + + ββ ρ − +

β β −β +β β ρ + + β ρ − + + β ρ − β ρ + + β ρ − =

(19)

Table 1: Basic data for single crystals of three metals

Quantity Units Cobalt Magnesium Zinc

ρ0 Kg m−3 8.836×103 1.74×103 7.14×103

T 0
0K 298 298 296

c11 N m−2 3.071×1011 5.974×1010 1.628×1011

c12 N m−2 1.650×1011 2.64×1010 0.362×1011

c13 N m−2 1.027×1011 2.17×1010 0.508×1011

c33 N m−2 3.581×1011 6.17×1010 0.627×1011

C44 N m−2 0.755×1011 1.639×1010 0.385×1011

β1 N m−2 deg−1 7.04×106 2.68×106 5.75×106

β2 N m−2 deg−1 6.90×106 2.68×106 5.17×106

cv J kg−1 deg−1 4.27×102 1.04×103 3.9×102

κ1 W m−1 deg−1 0.690×102 1.7×102 1.24×102

κ2 W m−1 deg−1 0.690×102 1.7×102 1.24×102

Table 2: Rayleigh wave speed under thermal effect

Materials Rayleigh wave speed (m/s)

Cobalt 2811.58,   2923.11
Magnesium 2894.65,   3069.13
Zinc 2045.01,   2322.1

Table 3: Rayleigh wave speed without thermal effect

Materials Rayleigh wave speed (m/s)

Cobalt 2811.58
Magnesium 2894.65
Zinc 2045.01

where the values of 2 2 2 2 3 3
1 2 1 2 1 2 1 2s s , s s , s s , s s+  and

2 2
1 2 1 2s s ( s s )+ can be obtained from Eqs. (14). It is

evident from Eqs. (12) and (14) that if s1
2, s2

2 are real, 
they must be positive in order to ensure that s1, s2
should have positive real parts. But if s12, s2

2 are 
complex, they must be complex conjugate. In both the 
cases s 1

2 s2
2 must be positive. Therefore, from Eq. (14b)

2 2
11 44( c c )( c c ) 0ρ − ρ − > (20)

Therefore, either 0<ρc2<min{c11, c44} or ρc2 > max 
{c11,  c44}. But if the latter inequality holds, then it is 
evident that right-hand side of Eq. (14a) will be
negative and so Eq. (!3) will have two negative real 
roots s 1

2, s2
2. This contradicts the requirement that s1, s2

should have positive real parts. Therefore, the Rayleigh 
wave speed must satisfy the following inequality

                           0<ρc2< min{c11, c44} (21)

The inequality (21) is the same necessary condition 
for Rayleigh wave propagation in transversely isotropic 
material as that of the wave without thermal effect [9].

MODEL WORK

Here we derive the Rayleigh wave speed for some 
of the transversely isotropic materials Cobalt,
Magnesium and Zinc. We take the elastic and thermal 
constants from the Table 1 [6].

Now substituting the values of 2 2
1 2s s , 2 2

1 2s s ,+
3 3

1 2 1 2s s , s s  and 2 2
1 2 1 2s s ( s s )+  from Eqs. (14) and elastic 

and thermal constants from Table 1 into the Eq. (19) 
and by using the computer software Mathematica we 
obtain the values of the Rayleigh wave speeds for the 
three materials. We accept only those values of speeds 
which satisfy the inequality (21) and are shown in 
Table 2.

Rayleigh wave speed without thermal effect for the 
said materials is shown in Table 3  (see,[9])

Comparing Table 2 and 3 we observe that one extra 
Rayleigh wave with some higher speed propagates 
under thermal effect. 

CONCLUSION

Rayleigh wave speed in some model transversely 
isotropic materials, under thermal and without thermal
effect, is calculated. It is observed that two Rayleigh 
waves propagate under thermal effect. One wave
propagates with the same speed as that of the wave 
which propagates without thermal effect and the other 
one propagates with some higher speed. It  is also 
observed that the necessary condition for Rayleigh 
wave propagation in the said material does not change 
under thermal effect.
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