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Abstract: An element in a ring R is said to be strongly n-clean for n≥1 if it is a sum of a nonzero 
Idempotent and n invertible elements. The ring R is called strongly n-clean if each element of R is strongly 
n-clean. We shall extend strongly 2-clean and then we shall show that, if R is strongly 2-clean then the 
endomorphism ring of any free R-module is also strongly 2-clean.
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INTRODUCTION

Throughout this paper, R denotes a ring with
Identity and all modules will be unitary.

An element in R is said to be (strongly) n-clean, if
it is a sum of an (nonzero) idempotent element and 
n invertible elements.

The ring R is called (strongly) n-clean if every 
element of R is (strongly) n-clean. Let R be a ring. R is 
called a potent ring if every ideal I⊄J(R) contains a 
nonzero idempotent. A ring R is called I-finite if it 
contains no infinite set of orthogonal idempotents.

1-clean rings were introduced for the first time by 
W.K Nicholson [1].we use U(R) for the group of units, 
Id (R) for the set of all idempotents and J(R) for the 
Jacobson radical of R also Mn(R) for n×n matrics over 
R and EndR(M) for the set of all endomorphisms of the 
R-module M.

Strongly 2-clean rings
Definition 2.1: An element x of a ring R is called
strongly 2-clean if x = e + u1 + u2 where 0≠e∈Id(R) and
ui∈U(R) for i = 1, 2. The ring R is called strongly
2-clean if every element of R is strongly 2-clean.

Example: Since in Z3 we have

2111,1110 ++=++= and 2212 ++=

Hence }2,1,0{3 =Z  is a strongly 2- clean, also it is 
clear that Z3×Z2 is a strongly 2-clean but Z2 is not 
strongly 2-clean. It is observed in [1] that the ring 

I

Rα
α∈
∏ is clean if and only if Rα is clean for every α∈I.

In the following we shall try to prove the above result 
for strongly n-clean rings.

Proposition 2.2: Let {Rα}α∈I be a family of rings such 
that at least one of them is strongly n-clean and the 
others are n-clean, then

I

Rα
α∈
∏  is strongly n-clean.

Proof: For example let Rβ(β∈I) be strongly 1-clean and 
let I

I

( r ) Rα α∈ α
α∈

∈∏ , since for all α∈I, Rα is 1-clean so rα

= eα+uα where eα(α∈I) are idempotents and uα are units 
and since Rβ is strongly1-clean hence
e 0.So r e uβ α α α≠ = +  where clearly (eα) is a nonzero

idempotent and (uα) is invertible element of
I

Rα
α∈
∏ ,

hence
I

Rα
α∈
∏  is strongly 1-clean ring, now by simple 

argument result for every n is clear.Now by example 1, 
The reverse of proposition 2 is not true.

Corollary 2.3: Let R be a strongly n-clean, then R[[x]]
is strongly n-clean.

Proof: Since we have

[ ]R x R  =  ∏

(R[[x]] = {(a, b, c, …) | a, b, c,…∈ R }) hence by 
proposition 2 it is clear.

It is clear that if φ: R→S is a monomorphism ring, 
0≠φ(e)∈Id(R) and u∈U(R) Then 0≠φ(e)∈Id(S) and φ(u)
is belong to U(S) In fact, we have The following 
proposition.

Proposition 2.4: Let f: R→S be homomorphism rings
and Id(R)∩ker f = {0}. If R is strongly n-clean then Im
f are strongly n-clean rings.
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Proof: Let s ∈ Im f be an arbitrary element, so
there exist r∈R such that f(r) = s. But as R is 
strongly n-clean so, we have 1 2 nr e u u ... u= + + + + ,
where 0 e Id(R)≠ ∈  and 1 nu, .. . ,u  are belong to U(R).
Therefore 1 nS f(r) f(e) f ( u ) ... f(u )= = + + +  since f(e) is a
nonzero idempotent of f(R) and f(u1),…, f(un)
are invertible element of f(R) hence Im f is strongly 
n-clean rings.

Corollary 2.5: Let R be a strongly n-clean ring and I an
ideal of R such that I∩Id(R) = {0}, then R/I is a 
strongly n-clean ring.

Proof: It follows by proposition 2.4.

Lemma 2.6: Let R be a ring such that eRe and
(1-e)R(1-e) are both strongly n-clean where e is an 
idempotent in R. Then R is strongly n-clean.

Proof: By using of pierce decomposition and writing r
for 1 – r we have:

eRe eRe a x
R .LetA R ,

eRe eRe y b
   

= = ∈   
   

and by hypothesis 1 2 na f u u ... u= + + + +  where
20 f f eRe≠ = ∈  and u1, u2,…,un are units in eRe with

inverses u′1, u′2,…,u′n respectively. Then
1b y u ' x eRe− ∈ so write 1 1 2 nb y u ' x g v v ... v− = + + + +

where 20 g g eRe≠ = ∈ and ν1,…,νn are units in eRe
with inverses ν′1,…,ν′n respectively. Hence 

1 2 n

1 2 n 1

f u u ... u x f 0
A

y g v v ... v yu' x 0 g
+ + + +   

= =   + + + + +   

1 2 n

1 2 n 1

u u ... u x f 0
y v v ... v yu' x 0 g

+ + +   
+ = +   + + + +   

1 2 n

n 1 1 n 1

u 0 u 0 u 0
...

0 v y u ' x 0 v 0 v −

     
+ + +     +     

f 0
Clearly

0 g
 
 
 

is a nonzero idempotent and

2 n

1 n 1

u 0 u 0
,...,

0 v 0 v −

   
   
   

are invertible. Also by using of pierce decomposition 
[2] it is simple to show that:

1

n 1

u 0
0 v yu' x
 
 + 

is a unit in R. so A is a strongly n-clean element and the 
proof is complete.

Corollary 2.7: Let R be a Ring and e1+e2 = 1 where e1
and e2 are orthogonal Idempotent and each eiRei is 
strongly n-clean.then R is strongly n-clean. Using the 
lemma 2.6 and corollary 2.7, an inductive argument 
gives immediately.

Theorem 2.8: Let 1 2 ne e .. e 1+ + + =  in a ring R where ei

are orthogonal idempotents and each eiRei is strongly n-
clean, Then R is Strongly n - clean.

The following results are direct consequences of 
the previous theorem.

Corollary 2.9: If R is a strongly n-clean ring so also is 
the matrix ring Mn(R)

Corollary 2.10: If 1 2 nM M M ... M= ⊕ ⊕ ⊕  are modules 
and EndR(Mi) is strongly n-clean for each i, then
EndR(M) is strongly n-clean for each i, then EndR(M) is 
strongly n-clean.

Proposition 2.11: Let 0≠e∈R be an Idempotent and the 
ring End(Re) has exactly one nonzero Idempotent e also 
let R be a strongly 1-clean then R is a potent ring and 
eRe is a local ring.

Proof: Since 0 and e are the only Idempotents in 
End(Re), hence e is primitive Idempotent. Now, let 
a∈R and suppose that aR contains only the zero
Idempotent. Given r∈R, write ar = e+u in R where e2 = 
e and u is a unit In and

1 1 1u(1 e)u (ar e)(1 e)u ar(1 e)u aR.− − −− = − − = − ∈

It follows that e = 1, that is I – ar = -u is a uint for 
all r∈R.

This shows that a∈J(R), so R is a potent ring.Now
for the second section let f2 = f∈R be primitive,and
choose a∈fRf with a J(fRf) J(R) fRf.∉ =   Then first 
section gives 20 g g aR fR≠ = ∈ ⊂ , so since f is
primitive, gR = fR Hence aR = fR so, if f = ab, b∈R,we
see that a has right inverse fbf in fRf. Since fbf∉J(Jrf).it
too has a right inverse in fRf and this follows that eRe is 
local.

Corollary 2.12: A ring R is semiprefect if and only if it 
is strongly 1- clean and I-finite.

Proof: If R is semiprefect it is well known that R is 
I-finite and that 1 2 n1 e e ... e= + + +  where eiRei is a local 
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ring for each i. since the local rings eiRei are strongly
1-clean, R is clean.

Conversely, if R is I-finite we can write
1 2 n1 e e ... e= + + + where the ei are orthogonal, primitive 

idempotents. since R is strongly 1-clean,each eiRei is
local by proposition 2.11 and hence is strongly 1-clean.
Therefore R is semiprefect.

Strongly n-clean endomorphism rings: Recently In
[3] camillo proved that the endomorphism ring of
continous module is clean.He also proved that the result 
is not true for any free module over a clean ring.
In fact he showed that the endomorphism ring of a 
free module over a semiperfect ring may not be 
clean. Here we claim that the result still is true for
strongly n-clean rings by corollary 2.9, we know that if 
M is a free R-module with finite rank and if R is 
strongly n-clean then so also is M, because in this case 
M≅Rn for some n and so 

n
nEnd(M) End(R ) M (R)≅ ≅ .

We shall show that if R is strongly n-clean then a 
free R-module M with any rank even uncountable
infinite rank also is strongly n-clean,then any free R-
module is also strongly n-clean, for seeing this claim 
we apply the meehan,s method.

Definition 3.1: Let ii I
M Re

∈
= ⊕  be a free R-module with 

rank |I| then we define

(i) The support of element i i
i I

m r e
∈

= ∑  of M by

i[m] {i I|r 0}= ∈ ≠  and the support of 0∈M is the 
empty set φ. Note that the support depends on the 
choice of bassis and that [m] is finite for any m∈M

(ii) let X be an arbitrary subset of M. we define the 
support of X as X = Um∈X[m]

Proposition 3.2: Let M = ⊕i<ωRei be a free R-module
of countably inifite rank and let φ be an endomorphism 
of M.

Then there exist a strictly increasing sequenece of 
natural numbers.

0 s0 r ... r ...(S )= < < < < ω

such that, if i<ω and s sr i r 1≤ < +  Then

i s 2[ (e)] {0,1,...,r 1}.+φ ⊆ −

Moreover, for any fixed positive integer m, rs may 
be chosen so that rs – 1 is a multiple of m.

Proof: See [4, proposition 2.3].
We make some further definitions based on the 

usual concept of odd and even parts of a function. if θ is 
any endomorphism of S SM M<ω= ⊕ we define θodd and 
θeven as follows: s

We note that θ = θodd + θeven

Lemma 3.3: Let m be a nonzero positive integer and 
suppose that a free R-module of finite rank m be
strongly n-clean.Then a free R-module of finite rank 
divisible by m is strongly n-clean too.

Proof: For each positive integer n, let Mn be a free R-
module of rank mn. Any endomorphism of M2 can be 
expressed as a 2m×2n matrix witch may consider as a 

2×2 block matrix 
A B
C D
 
 
 

. But since each of the two 

diagonal blocks is strongly 2-clean so we have:

1 1 2

2 1 2

1 1 2

2 1 2

E U U BA B
C D C E V V

E 0 U B U 0
0 E 0 V C V

+ +  
=    + +   
     

= + +     
     

Since the matrices U1, V1, U2 and V2 are all
invertible,it is very easy to check that the two later 
matrices are invertible.Now with a simple induction 
argument we can see that EndR(Mn) is strongly n-clean
for each n∈N.

Theorem 3.4: Let m be a positive integer and suppose 
that a free R-module of finite rank m be strongly n-
clean. if iM <ω= ⊕  Rei is a free R-module of countably 
infinite rank, then every endomorphism of M is
strongly n-clean.

Proof: Let φ be any endomorphism of M. then
by proposition 10 there is a sequence

0 1 sr r ... r ...(s )< < < < ∈ω such that for 

s s 1 i s 2r i r ,[e ] {0,1,...,r 1}+ +≤ < φ ⊆ −

 and furthermore, rs - 1 is a multiple of m for all 0, s∈ω.
Now we define

k k 1
K ir i r

M Re
+≤ <

= ⊕ and 1 i0 k j
N M ,

≤ ≤
= ⊕ k<ω

Write s

S∈ω
φ = ⊕ φ ,this being the usual matrix

decomposition where φs denotes the restriction of φ to 
Ms we can now write

s s s s s
1 0 1∗ −φ = φ + φ + φ + φ
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Where
s s s s s

1 0 1, , ,∗ −φ = φ φ φ φ

are the composition of φs with projections onto the four 
summands s 2 s 1 sN ,M , M− −  and Ms+1 respectively.Let

s s s
1 1 0 0s s s

, ,∗ ∗ − −<ω ω ω
φ = ⊕ φ φ = ⊕ φ φ = ⊕ φ

 
and s

1 1φ = ⊕ φ .

By assumption a free R-module of finite rank m, is 
strongly n-clean and since for each s∈ω, the rank of Ms
is a multiple of m, then by lemma 3.3, Ms is strongly n-
clean, so we can write s s s s

0 0 0 0eφ = + α + β where s
0e  is a 

nonzero idempotent and s
0α  and s

0β  are automorphisms 
of Ms,for each s∈ω. let s s

0 0s s
e e ,

<ω <ω
= ⊕ α = ⊕ α and s

0s<ω
β = ⊕ β

Where e is a nonzero idempotetnt of M and α and 
β are automorphisms of M.

Now decompose φ as follows: 1 2eφ = + ψ + ψ

where

odd odd
1 1 1( )− ∗ψ = α + φ + φ + φ

and
even even

2 1 1( )−ψ = β+ φ + φ

As meehan has proved ([4, theorem2.5]) we can see 
that ψ1 and ψ2 are automorphism. therefore M is 
strongly n-clean.

Now by theorem 16 and applying the method of the
proof of theorem 2.7 from [4] immediately we have the 
following theorem.

Theorem 3.5: Let R be an strongly 2-clean ring then 
any free R-module with uncountble rank also is
strongly n-clean.
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