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Abstract: Optimization of cutting parameters is valuable in terms of providing high precision and efficient 
machining. One of the effects of cutting force in the end milling operation with low diameter tool (during 
metal cutting) is tool deflection. Assuming that machining errors mostly arise from tool deflection, attempt 
was made to optimize machining parameters using Genetic Algorithm (GA) so as to minimize tool
deflection. In contrast to other optimizations in which machining time and cost are defined as the objective 
functions, our algorithm considers tool deflection as the objective function while surface roughness and 
tool life are the constraints. In order to verify accuracy of optimization, results were compared with those 
calculable based on the theoretical relationships, in terms of agreement to those obtained experimentally. 
The obtained results indicate that the optimized parameters are capable of machining the workpiece more 
accurately with better surface finish.
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INTRODUCTION

This paper reports on a new error compensation 
approach focused on machining parameters induced 
errors in machined surface with low diameter tools. The 
determination of optimal cutting parameters such as 
axial depth of cut, radial depth of cut and feed rate, 
which are applicable for assigned cutting tools, is one 
of the vital modules in process planning of metal parts, 
since the accuracy of machined surface plays an
important role in increasing productivity and
competitiveness [1]. One of the purposes of this paper 
is to investigate the optimal cutting parameters to
minimize tool deflection for error compensation on the 
machined surface while maintaining material removal 
rate and stability of the cutting process. The main 
parameters in machining affecting tool deflection and 
surface finish are axial depth of cut, radial depth of cut 
and feed rate. The optimal cutting parameters are
subjected to an objective function of tool deflection 
with the feasible range of cutting parameters. The user 
of the machine tool must know how to choose cutting 
parameters in order to minimize cutting time, cutting 
force and produce better surface finish (surface
roughness) under stable conditions. Normally, feed rate, 
axial depth of cut and radial depth of cut immersion are 
chosen according to the technical guide. But these

parameters are strongly dependent on the static and 
dynamic properties of the tool. In order to obtain better 
surface roughness, the proper setting of cutting
parameters is crucial before the process takes place.

This study introduces a developed computer
algorithm to optimize the cutting parameters to
minimize tool deflection and increase tool life and
surface roughness for a constant material removal rate. 
The system is mainly based on a powerful artificial 
intelligence (AI) tool, called genetic algorithms (GA). 
The use of the impact and the power of AI techniques 
have been reflected on the performance of the
optimization system. The methodology of the
developed optimization system is illustrated by
practical examples throughout the study. Optimization 
of the machining parameters increases the product
quality to a great extent [2, 3]. 

MODELING

In the milling process, material is removed from a 
work piece by a rotating cutting tool. Milling process 
can be modeled as cutting simultaneously with a
number of single-point cutting tools. A model
coordinate system of end milling is illustrated in Fig. 1. 
The  cutter  is  assumed to have z number of teeth and 
30 (Deg) helix angle.
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Fig. 1: Model coordinate system

Fig. 2: Axial and radial depth of cut

Determination of cutting force
Conventional cutting force model: Tlusty and
McNeil’s cutting force model [4] was developed for 
Conventional end-milling operations in 1975. It was 
based on the following three assumptions:

Assumption 1: The tangential cutting force, Ft (N), is 
proportional to the cutting area (It is tangent to tool’s 
edge).

          Ft = Kmbh (1)

Assumption 2: The radial cutting force, Fr (N), is 
proportional to the tangential cutting force (It is vertical 
to tool’s edge).

r f tF P.F= (2)

Assumption 3: The chip thickness, h (mm), can be 
expressed by the following expression:

                                 h = ft sin θ (3)

The coordinate system of the model, axial depth, 
b(mm) and radial depth, a(mm) of cut is presented in 
Fig. 1 and Fig. 2, respectively.

For a certain tool cutting angle θ (Rad), the chip 
thickness,   h,  is  not  a  constant  but  a  function  of  Zc

(The coordinate perpendicular to the x-y plane) because 
of the tool helix angle β (Rad).

dFt = Kh(zc) dzc
Where

Zc = Zc (θ)

dzc = (r/tan β) dθ

The exp ressions Eq. (1) and Eq. (2) can be rewritten as:

dhPfFdF
dhfFdF
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The expressions for the cutting force model were 
derived as:
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Where, Fu is unit force (N) and Fu = Kmrft/tan β/2, Fx is 
normal direction cutting force (N), Fy is feed direction 
cutting force (N), r is tool radius(mm), Km is material 
coefficient (N mm–1), ft is feed per tooth(mm tooth–1), θs

is integrating start angle (Rad), θe is integrating end 
angle (Rad), also according to the experimental data, 
the proportional factor Pf was usually selected as 0.3.

OPTIMIZATION

Working principle of GA: The genetic algorithm
(GA) is a population-based search optimization
technique. In general, the fittest individuals of any 
population tend to reproduce and survive to the next 
generation, thus improving successive generations.
However, inferior individuals can, by chance, survive 
and also reproduce. Genetic algorithms have been
shown to solve linear and nonlinear problems by
exploring all regions of the state space and
exponentially exploiting promising areas through
mutation, crossover and selection operations applied to 
individuals in the population. The use of a genetic
algorithm requires the determination of six fundamental 
issues, chromosome representation, selection function, 
the genetic operators making up the reproduction
function, the creation of the initial population,
termination criteria and the evaluation function [2]. The 
range of cutting parameters is given in Table 1.
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Table 1: Cutting parameters for experimental

Diameter of tool (mm) Cutting speed (m min –1) Feed rate (mm min –1) Axial depth of cut (mm) Radial depth of cut (mm)

3 23.56 8,16,25,40,50 1.5 1.5
3 23.56 8,16,25,40,50 3.0 1.5
3 23.56 8,16,25,40,50 4.5 1.5
3 23.56 8,16,25,40,50 5.0 1.5

Implementation of GA
Coding: In order to use GAs to solve the problem, 
variables (in this study a, b and ft) are first coded in 
some string structures. Binary-coded strings having 
ones and zeros are primarily used. The length of the 
string is usually determined according to the desired 
solution accuracy. In order to solve this problem using 
GA, binary coding is chosen to represent the variables 
f, b and a. In the calculation here, 8 bits are chosen for 
f, b and a and thereby making a total string length of 24. 
With the coding, the solution accuracy obtained in the 
given interval for ft, b and a are 0.001 mm tooth–1, 0.01 
mm and 0.01 mm, respectively.

Fitness function: GAs mimic the “survival of the
fittest” principle. So, naturally they are suitable to solve 
maximization problems. Maximization problems are
usually transformed to minimization problems by some 
suitable transformation. A fitness function, F(x), is
derived from the objective function, f(x) and is  used in 
successive genetic operations. For maximization
problems, fitness function can be considered the same 
as the objective function. The minimization problem is 
an equivalent maximization problem such that the
optimum point remains unchanged. A number of such 
transformations are possible. The fitness function often 
used is

1
F(x)

(1_f(x))
(6)

Where F(x) is the fitness function and f(x) is the
objective function.

The independent variables for optimal cutting
parameters  have  been  identified  as  the following: 
Tool  diameters  and  length, spindle  speed  and  feed 
per tooth [2].

Genetic operators
Reproduction: Reproduction is the first operator
applied on a population. In this process individual
strings are copied into a separate string called the
‘mating pool’ according to their fitness values, i.e. the 
strings  with  a  higher  value  have a higher probability 
of contributing one or more offspring in the next
generation. A reproduction operator can be

implemented in algorithmic form in a number of ways. 
The easiest way is to create a biased roulette wheel 
where each current string in the population has a
roulette-wheel-slot-size in proportion to its fitness. In 
this way more highly fit strings have higher numbers of 
offspring in the succeeding generation. Once the string 
has been selected for reproduction, an extra replica of 
the string is made. The string is then entered into the 
mating pool, a tentative new population for further
genetic operator action.

Crossover: After reproduction, the population is
enriched with good strings from the previous generation 
but does not have any new string. A crossover operator 
is applied to the population to hopefully create better 
strings. The total number of participative strings in 
crossover is controlled by crossover probability, which 
is the ratio of total strings selected for mating and the 
population size. The crossover operator is mainly
responsible for the search aspects of GA. In order to 
perform crossover, a random number is generated
between 1 and 7. If the random number is 5, the bits 
after the 5th position are exchanged as given below in 
the following example.

Example:
String 1_11001101
String 2_01110100
Crossover probability = 0.9
New string (offspring 1)-11001100
New string (offspring 2)-01110101

Mutation: Mutation, as in the case of simple GA, is the 
occasional random alteration of the value of a string 
position. This means changing 0 to 1 or vice versa on a 
bit by bit basis and with a small mutation probability of 
0.001 to 0.05.

The need for mutation is to keep diversity in the 
population.

Example:
String 1 -11001101
String 2 -01110100
Mutation probability =0.001
New string (offspring 1)-01001101
New string (offspring 2)-01110110
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Table 2: Speciation of tool
Mill diameter (D1), Flute Flute Overall
Shank diameter (D2) (C,N) length (L1) length (L2)
3mm, 6mm (HSS) 4 (9.05, 0.95) 11 mm 56 mm

Fig. 3: Loading and boundary conditions of the end 
mill [5]

After applying the GA operators, a new set of
population is created. Then, they are decoded and 
objective function values are calculated. This completes 
one generation of GA. Such iterations are continued till 
the termination criterion is achieved. The above process 
is simulated by a computer program with a population 
size of 25, iterated for 200 generations and crossover 
and mutation probability are selected to be 0.9 and 
0.001, respectively.

Objective function
Deflection analysis of end mills: The main objective 
of the static analysis is to determine the deflection of 
end mills under milling forces. For static deflection 
analysis of end mills, the tool holder is assumed to be 
rigid and the cantilever beam model is used. However, 
the holder and clamping stiffness can also be included 
in the analysis if they are known. End mill deflections 
can be approximated using the beam model. The
loading and boundary conditions of the end mill used in 
the model are shown in Fig. 3, where D1 is the mill 
diameter, D2 is the shank diameter, L1 is the flute
length, L2 is the overall length, Fx is the point load.

Modeling and FEA can be unpractical and time 
consuming for each tool configuration in a virtual
machining environment. Therefore, simplified
equations are generated to predict deflections of tools 
for given geometric parameters and density. The static 
characteristics of end mills can easily be
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Where Fx is the applied force and E is the modulus of 
elasticity (MPa) of the tool material. The geometric
properties of the end mill are in mm. The constant C is 
9.05, 8.30 and 7.93 and constant N is 0.950, 0.965 and 
0.974 for 4-flute, 3-flute and 2-flute cutters,
respectively, Kivanc and Budak [5]. These parameters 
for this investigation is given in the Table 2.

CONSTRAINTS

This section shows optimizing the machining
parameters for minimizing tool deflection by using
genetic algorithm. In this problem, the objective
function is minimizing tool deflection in end milling 
operation.

In practice, possible ranges for cutting speed and 
feed rate are limited by the following constraints:

• Surface finish requirements; for the milling process 
the surface roughness range is 0.8 to 6.3 µm.

• Tool life; minimum expected tool life for an HSS 
tool is 60 to 120 min.

• Maximum cutting  force  permitted  by the rigidity 
of the tool; maximum cutting force is limited to 
500 N.

• Amplitude of vibration at the work piece holder; 
for stable cutting the maximum amplitude of
vibration is limited to 2 µm.

• Maximum heat generated by cutting 
• Available feed rates and spindle speeds on the 

machine tool

Excessive heat generation can be overcome by the 
use of efficient coolants. Also, modern NC and CNC 
machines are not faced with the last constraint since 
they provide all possible feed rates and spindle speed 
within an acceptable range. Therefore, the first four 
constraints are considered in this work.

Surface roughness: Ra is the most commonly used 
parameter to describe the average surface roughness 
and is defined as an integral of the absolute value of the 
roughness profile measured over an evaluation length, 
Tolouei-Rad and Bidhendi [6]:

l

a 0
R (1/l) |Z(x)|dx= ∫ (8)

Where, Z(x) is the area of the each peak and l is the 
length of workpiece that has machined. The average 
roughness is the total area of the peaks and valleys 
divided by the evaluation length; it is expressed in µm 
(thousandths of a millimeter). The arithmetic value of 
surface roughness in end milling can be represented by:

                             Ra = 318(ft
2)/(4d) (9)

Where ft is feed per tooth (mm tooth–1) and d cutter 
diameter (mm).

Tool life: Tool life TL(min) can be defined as a tool’s 
useful  life until it no longer produces satisfactory parts. 
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Table 3: GA results values for the optimized cutting parameters for 
minimizing tool deflection

Diameter of Feed Axial Radial
end mill rate depth of cut depth of cut

3 mm (HSS) 22 (mm min –1) 2.925 (mm) 1.42 (mm)

Table 4: GA results values for the optimized cutting parameters for 
minimizing tool deflection in practice

Diameter of Feed Axial Radial
end mill rate depth of cut depth of cut

3 mm (HSS) 20 (mm min –1) 3 (mm) 1.5 (mm)

Fig. 4: Experimental (end milling)

Fig. 5: Error compensation (perpendicularly)

Fig. 6: Compensated surface (perpendicularly) by
using GA results in Table 4

When the wear reaches a certain value the tool is not 
capable of further cutting unless it is resharpened. This 
is because increased bluntness of the cutting edge
causes an increase in cutting forces and as a result tool 
temperature also increases. Consequently both
dimensional accuracy and surface finish of the
machined piece suffer, ultimately leading to the
production of rejects. Life of the tool is affected by 
various parameters such as cutting speed, feed, depth of 
cut,  chip  thickness,  tool geometry and cutting fluid. A 

corrected empirical formula for the practical tool life 
TL(min) of a cutting tool to be used in end milling 
operations has been proposed by Tolouei-Rad and 
Bidhendi [6]:
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Where m is 0.15 for HSS tools, while it reaches a 
maximum of 0.30 for the carbide tools, C is 33.98 for 
HSS tools and 100.05 for the carbide tools, Q is the 
contact proportion of cutting edge with workpiece per 
revolution, G is slenderness ratio that G=b/ft and A is 
chip cross-sectional area that A=b.ft, g=0.14 and
w=0.28, Tolouei-Rad and Bidhendi [6].

Cutting force: The cutting force equations derived 
from the model in the x and y directions are given by 
equations 4 and 5.

MATERIALS AND METHODS

The milling operation was carried out on Universal 
milling machine on steel AISI 1045 workpiece material 
using two HSS tools. The purpose of the experiment is 
to validate the optimized parameters during an end 
milling operation. The experimental setup is shown in 
Fig. 4. The test conditions are selected conform to 
Machinery’s Handbook and limitations of milling
machine they are given in Table 1. 

Optimization has been performed using GA to
decide the best possible combination of feed rate, axial 
depth of cut and radial depth of cut by satisfying
constraints including tool deflection, cutting force, tool 
life and surface roughness. Figure 5 shows the effect of 
tool deflection on the machined surface. In this work, 
error of tool deflection on the machined surface has 
been compensated by using genetic algorithm.

The ranges  of  cutting  parameters are given in 
Table 1. In this table, feed rates and depths of cut are 
changed but the cutting speed is considered constantly, 
because the cutting speed has less effect on the cutting 
force and tool deflection. Table 3 shows the GA results 
for optimized cutting parameters in the x direction for 
machining of mild steel material (AISI1045), but
because of the limitation of milling machine, Table 4 
has been used for cutting operation. Table 5 shows the 
comparison of GA results and measured parameters for 
optimized machining parameters for machining of mild 
steel material. The good agreement between the GA 
results and measured parameters clearly demonstrates 
the accuracy and effectiveness of the model presented
and program developed.
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Table 5: Comparison of GA results and experimental values for the optimized cutting parameters
GA results Measured values

Cutting speed Feed rate Axial depth Radial depth ------------------------------------- ------------------------------
(m min –1) (mm min –1) of cut (mm) of cut (mm) 1 2 3 1 2 3
23.56 25 3 1.5 1.6 0.0531 19 2 0.056 10
1: Roughness (µm); 2: Tool deflection (mm); 3: Cutting force Fx(N)

                                       (a)                                               (b)                                              (c)
Fig. 7: Effect of tool deflection on the machined surface without using GA results

(a), b=3mm, a =1.5 mm, cutting speed= 23.56(m min–1), feed rate=16(mm min–1)
(b), b=3mm, a =1.5 mm, cutting speed = 23.56(m min–1), feed rate =40(mm min–1)
(c), b=3mm, a =1.5 mm  cutting speed = 23.56(m min–1), feed rate =50(mm min–1)

Figure 6 is shown that in practice with optimized 
cutting parameters (Table 4) effect of tool deflection on 
the machined surface has been reduced. This Figure is 
shown, compensated surface (perpendicularly) by using 
GA results (Table 4). 

Metal cutting has been performed by other the 
cutting parameters (Table 1). Figure 7 is shown effect 
of tool deflection on the machined surface without 
using GA results.

CONCLUSIONS

Machining parameters are typically adjusted
according to the instructions in the tools catalogues 
and/or handbooks without regard to the roughness 
requirements  and  geometrical  tolerances  of the
surface to be machined. Incorrect adjustment of the 
machining  parameters,  feed  rate  and  depth  of cut 
lead to tool deflection and consequently reduced
surface quality. With increasing feed rate and depth of 
cut, the tool deflection is increased. Optimization of 
machining  parameters  using  Genetic  Algorithm  led 
to minimal machining errors. By defining maximum
surface  roughness  of  6.3 µm  as  the constraint, 
surface roughness of 1.6µm was obtained with the
optimized parameters. With the GA -based optimization 
system developed in this work, it would be possible to 
increase  machining  accuracy  (surface  roughness  and 

geometrical tolerances) by using optimal cutting
parameters.
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