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Abstract: In this paper a new time domain noise reduction approach is presented. In existing noise 
reduction techniques, the structure of the enhanced signal might be slightly changed compared to the 
original signal. In the proposed non-destructive approach, the noisy signal is initially represented in a 
Hankel Matrix. Then the Singular Value Decomposition (SVD) operator is applied on the matrix to divide 
the data into signal subspace and noise subspace. Reducing the effect of noise from the singular vectors and 
using them in reproducing the matrix, leads to significant enhancement of information embedded in the 
matrix. This matrix is finally used to obtain the time-series signal. There are several important parameters, 
such as size of the matrix and the degree of the filter, affecting the performance of the proposed approach. 
These parameters are optimally set using the genetic algorithm. The results of applying the proposed 
method on different synthetic noisy signals indicate its better efficiency in noise reduction compared to the 
other time series methods. The obtained results also indicate that using the proposed approach keeps the 
main structure of the original signal unchanged. 
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INTRODUCTION

Signal enhancement and noise reduction have wide 
applications in signal processing. They are often
employed as a pre-processing stage in various
applications such as audio conferencing, hands-free
mobile telephony, cellular mobile communication,
computer-based speech recognition or speaker
identification and etc. [1-7].

Since the nature and the characteristics of noise 
may significantly change from application to
application, noise reduction is a very challenging
problem. In addition, noise characteristics may vary in 
time. It is therefore very difficult to develop a versatile 
algorithm that works in diversified environments.
Hence the objective of a noise reduction system may 
depend on the specific context and application. 

Two points are often required to be considered in 
signal de-noising applications: eliminating the
undesired noise from signal to improve the Signal-to-
noise Ratio (SNR) and preserving the shape and
characteristics of the original signal. The existing noise 
reduction methods reduce the noise by considering 
some prior assumptions. Hence they are suitable for 
specific applications and conditions [8, 9]. For example, 
in using a typical Low Pass Filter (LPF), it is assumed 

that the noise is placed at the high frequency regions of 
the noisy signal. This means that the frequency bands of 
noise and the clean signal are distinct. This assumption 
may not be acceptable in various conditions and may 
restrict its applications. In addition, as can be seen in 
Fig. 1, low pass filters such as those using the
convolution   operator,   cause   shifting  the  signal in 
time domain and changing the shape of the signal
slightly [10]. 

Depending on the domain of analyses, the existing 
noise reduction techniques can be categorized into three
groups: time, frequency and time-frequency/time-scale
domains. In time-scale based approaches, the signal is 
sub-divided into several frequency bands using wavelet 
transform. The noise reduced sub signals are then used 
to reconstruct the enhanced signal. Extensive researches 
have been accomplished on the wavelet based methods 
with considerable results [11-13]. One of these methods 
is based on the Bionic Wavelet Transform (BWT), an 
adaptive wavelet transform based on a non-linear
auditory model of the cochlear [14, 15]. In this
approach, the enhancement is the result of thresholding 
on the adapted BWT coefficients. In [16], the author 
proposed a time-frequency based approach for noise 
reduction. In this approach, the Singular Value
Decomposition   (SVD)   technique   is  applied   on  the 
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Fig. 1: The effect of convolution-based filtering on a noisy signal: A Butterworth LPF was applied on the noisy 
signal with SNR=1 (bottom dashed line). Although the noise was removed (dotted line), the shape of the 
enhanced signal is not the same as the original noise-free signal (the top solid line)

matrix of the time-frequency representation of the
signal. This technique separates noise subspace and 
signal subspace using singular values of data matrix as 
criteria for subspace division. This time-frequency
based technique has a good performance in reducing 
noise from both stationary and nonstationary signals. 
However, there are two deficiencies in the time-
frequency based approach for noise reduction. A high 
computational time is required for representing signal 
in  the  time-frequency  domain.  In  addition, some 
time-frequency distributions, such as B-distribution
[17], cannot be synthesized to the time series.

There are a number of frequency domain based 
approaches that use spectral subtraction for noise
reduction [18-23]. These approaches are only suitable 
for specific applications. For example, in [19] the noise 
is considered to be stationary. In practice, however, the 
noise is usually nonstationary. In another approach 
[23], the high frequency region of the signal is used to 
estimate the noise. This approach can be used to 
enhance  speech  signals,  as  the  high  frequency 
region has no signal of human speech. It was reported 
that  this  approach  needs  a  high  sampling  rate 
(higher than 30 KHz).

The Wiener filter is a well-known noise reduction 
technique among the time domain based approaches 
[24]. In this method, the noisy signal is passed through 
a Finite Impulse Response (FIR) filter whose
coefficients are estimated by minimizing the Mean
Square Error  (MSE) between the clean signal and its 

estimation  to  restore  the  desired signal. This filter is 
one of the most fundamental approaches for noise
reduction, which can be formulated in the time and also 
in the frequency domains. 

The Wiener filter is usually able to reduce noise in 
a signal. However, the amount of noise reduction is 
often accompanied by signal degradation. In other
words, Wiener filter can be used to reduce noise in a 
signal  if  the  SNR is high enough (usually higher than 
4 dB). When SNR for a signal is low, using Wiener 
filter may not be a suitable solution and may just 
transform the noise from one form to another [10, 24]. 
This is a discouraging factor in choosing Wiener filter 
for noise reduction.

Recently, time domain based approaches for noise 
reduction have received considerable attention among 
scientific researches [25-27]. These techniques
construct a time data matrix of noisy signal. The
structures of these data matrices usually have the
Hankel or Toeplitz forms, which have been introduced 
in [28-30]. In this paper, we utilize the Hankel matrix to 
construct the data matrix. This data matrix is
subdivided into signal subspace and noise subspace 
using the SVD-based approach introduced in [27]. In 
this article the Savitzky-Golay low pass filter [31] is 
utilized to reduce noise from the singular vectors. The 
noise reduced singular vectors with the singular values 
of the signal subspace are used to reconstruct the
matrix.  Subsequently,  this noise-reduced matrix is
used   to   extract    the   time   series,  representing   the
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                                              (a)                                                     (b)       (c)
Fig. 2: Illustration of (a) an arbitrary white noise, (b) its autocorrelation and (c) its power spectrum

noise-attenuated signal. Some specific parameters
which  are  determined  using the genetic algorithm, 
such as size of the matrix and the degree of the filter, 
may affect the performance of our noise reduction 
approach.

The organization of present paper is as follows: 
Section 2 describes the proposed SVD-based noise 
reduction technique. The noise subspace subtraction is 
outlined in this section after a brief preliminary
description of the SVD operator. We propose the
utilization of the Savitzky-Golay filter to enhance the 
noisy singular vectors and show how applying the
genetic algorithm can be useful in the optimal setting of 
the parameters. In Section 3, the proposed noise
reduction   method   is  applied  on  stationary  and
non-stationary signals and the results are compared 
with those obtained using other time-domain noise
reduction methods. Finally, the conclusions are drawn 
in section 4.

SVD-BASED NOISE 
REDUCTION TECHNIQUE

Preliminaries: In many noisy acoustic environments 
such as a moving car or train, or over a noisy telephone 
channel, the signal is considered to be infected by an 
additive random noise [1]. In this paper, we suppose
that the clean signal has been corrupted by an additive 
white Gaussian noise:

                                Xn = Xs + Wn (1)

where Xn, Xs and Wn denote noisy signal, clean signal 
and white Gaussian noise, respectively. The white noise 
is defined as an uncorrelated process with equal power 
at all frequencies (Fig. 2). 

The Hankel matrix is a square matrix, in which all 
the elements are the same along any northeast to 
southwest diagonal. In mathematical terms each
element of this matrix can be expressed as ai,j = ai-1,j+1 .
For Xn(i), I = 1,…,N representing the noisy signal, the 
Hankel matrix is constructed as follows:

Fig. 3: Normalized singular values of the Hankel
matrix constructed from a given noisy signal
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Generally, the singular value decomposition of
matrix H with size P×Q is of the form:

                                     H = UΣVT (3)

where UP×r and Vr×Q are orthogonal matrices and Σ is a 
r×r diagonal matrix of singular values with components 
σij=0  if i≠j and σij>0 and σij>0  Furthermore, it can be 
shown that σ11≥σ22≥…≥0. The columns of the
orthogonal matrices U and V are called the left and 
right singular vectors respectively.

Noise subspace subtraction: Subspace filtering is a
technique that has been proven very effective in the 
area of signal enhancement [4]. Hence, to enhance
information embedded in the Hankel matrix, we
propose dividing the data matrix into signal subspace 
and noise subspace using the singular values. Since 
singular   vectors   are   the   span   bases   of the matrix, 
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reducing the effect of noise from the singular vectors 
and using them in reproducing the matrix, leads to 
further enhancement of information embedded in the
matrix.

Mathematically, the subspace separation can be 
expressed as below: 
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where Σs and Σn represent the clean signal subspace and 
noise   subspace,   respectively.   As  can  be  seen  from 
equation (4), we must determine a threshold point in the 
Σ matrix where lower singular values from that point 
can be categorized as noise subspace and therefore 
should be set to zero. To determine this point, the 
singular values of Σ matrix for a given simple noisy 
signal are plotted, respect to their indices (Fig. 3). A
break point can clearly be seen in this figure.
Considering this break point as the threshold and setting 
the lower singular values to zero leads to considerable 
noise reduction. However, for more complicated
signals, determining this threshold point is very
challenging and needs more attention. We have recently 
developed an approach to obtain this threshold point, 
see [10]. In that study, we had utilized the maximum
slope of changes in the singular values curve. But in the 
proposed method we use the genetic algorithm to find 
this value as well as other important parameters. The 
procedure of this technique will be explained in the 
following subsections. As mentioned above, our
research indicates that the noise subspace is mainly 
related to those singular values that are lower than the 
threshold point. Thus, we suggest setting these singular 
values to zero for space division.

To clarify the proposing method, the concept of 
matrix  rank  is  described  briefly.  The  rank of a 
matrix can be directly determined by the number of 
nonzero singular values from its SVD. For example,
when  the  clean  data  matrix  is  symmetric  (Toeplitz) 
or per symmetric (Hankel) and the data are sinusoidal 
or  complex  exponential, with  no  additive  noise,
then the rank is equal to twice the number of real
sinusoid or the number of complex exponentials
presented in data [32]. But a noisy signal has much 
more  nonzero  singular  values which belong to the 
noise subspace. Hence, they must be set to zero for 
noise reduction.

Enhancing the singular vectors: We have inferred 
from   our   experiments   that   by  merely  filtering  the 
singular values, some noisy data will still be available 
in the signal subspace. Thus besides the noise subspace 
subtraction, we must filter the singular vectors (SVs) 
for further noise reduction. Figure 4, illustrates the
effect of noise on the U matrix (left singular vectors). In 
this experiment, an arbitrary stationary signal is
infected by the 0dB white Gaussian noise. Then, the 
first, third and fifth columns of U matrix associated 
with the clean and noisy signals are plotted. As it can 
clearly be seen in this figure, the noise has affected the 
original signal’s left singular vectors (Fig. 4). 

In this study, SVs are treated as time-series. To 
reduce the effect of noise on SVs, we utilize the
Savitzky-Golay filter. This low-pass filter is suitable for 
smoothing data in time series as well as calculating the 
first up to the fifth derivatives. In the Savitzky-Golay
approach, each value of the series is replaced with a 
new value which is obtained from a polynomial fit to 
2k+1 neighboring points. The parameter k is equal to, 
or greater than the order of the polynomial. The main 
advantage of this approach in comparison with other 
adjacent averaging techniques is that it tends to
preserve the features of the time series distribution. To 
further studies, refer to [31].

In this approach a polynomial of degree d is fit on 
nw consecutive data points from the time-series, in 
which nw  is the frame or window size. Filtered singular 
vectors can be obtained as follows:
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In the proposed approach, the amount of noise 
reduction depends on the degree and frame size of the 
Savitzky-Golay filter. As illustrated in Fig. 6 and 7,
choosing various frame sizes and polynomial degrees 
for Savitzky-Golay filter leads to achieving different 
results.

In this study, we have distinguished four crucial 
parameters affecting the performance of proposed noise 
reduction method. They are the number of rows l (in the 
data matrix), the optimum threshold point Pcut needed 
for space subdivision, the degree d and the window size 
nw of Savitzky-Golay filter. To set these parameters 
properly, we define a cost function and use the genetic 
algorithm to minimize the cost. 

Once a filter is applied on a signal, the level of 
sudden changes in successive samples is reduced. On 
the other hand, the enhanced signal should still be 
similar to the noisy signal after filtering since this is the 
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Fig. 4: Effect of noise on the columns of U matrix: (a) original arbitrary signal and its noisy version with SNR=0 

dB; (b), (f) and (d): The effect of noise on the first, third and fifth columns of the U matrix, respectively
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Fig. 5: The result of applying Savitzky-Golay filter on 
singular vectors of the noisy signal. From top to 
bottom: clean signal, noisy signal with
SNR=0dB, the result of subtracting the noise 
subspace per se, the result of filtering the
singular vectors as well as noise subspace
subtraction
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Fig. 6: The  effect  of  using different values as
Savitzky-Golay window size. From top to
bottom: clean signal, noisy signal and the
enhanced signals after applying nw = 5, nw =15,
nw =25, nw =35 and nw = 45, as the window 
sizes of the Savitzky-Golay filter
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Fig. 7: The effect  of  using  different values as
Savitzky-Golay  polynomial  degree. From top 
to bottom: clean signal, noisy signal and the 
enhanced signals using d=5, d=4, d=3 and d=2, 
as the degrees of the Savitzky-Golay filter. The 
window size was set to 15

only thing we know about the shape of the original 
signal. Hence, we offer the following cost function for 
optimally tuning parameters of the filter:

cut w e n
k

e e
k

J(l,p ,d,n ) (1 )( x ( k ) x (k))

x (k 1) x (k)

= − α −

+ α + −

∑

∑
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where xn, xk and k represent the noisy signal, enhanced 
signal and their sample number respectively. In this 
equation, α is a factor determining smoothness of the 
enhanced signal and must be chosen between 0 and 1. 
At the right side of the above equation, the first term 
indicates the distance between the enhanced signal and 
the noisy signal; and the second term indicates the 
smoothness of the enhanced signal. 

We minimize this cost function using genetic
algorithm. The genetic algorithm is an iterative
algorithm which randomly chooses some values from 
the search space in each repetition. In this algorithm, 
the enhanced signal is initially computed using samples 
of these four parameters and then the cost function in 
(9) is calculated. In each repetition, the parameters are 
optimally chosen to minimize the cost. After several 
iterations,   the  final  optimal  parameters  are achieved. 

For more detailed information about the genetic
algorithm refer to reference [33].

The enhanced data matrix is then obtained using:

                      He = UeΣsVe
T (10)

where Ue and Ve are the enhanced versions of left and 
right singular vectors and Σs represents the matrix
containing the signal subspace singular values.

Finally, the enhanced signal Xe is extracted as 
follows:

    Xe = [He(1,1)…He(1,Q), He(2,Q)…He(P,Q)] (11)

PERFORMANCE EVALUATION

To evaluate performance of the proposed approach, 
several experiments have been carried out on multi-
component periodic signals as well as linear FM (LFM) 
signals corrupted by addit ive white Gaussian noise. The 
results of each experiment are described in the
following subsections. 

Multi-component periodic signals: Let

x(t) 0.2sin(2 ft) sin(2 (3f)t)
0.5cos(2 (5f)t)
1.5cos(2 (7f)t) (t)

= π + π
+ π
+ π + η

(12)

represent a multi-component signal infected by noise η
(t). In this experiment, we use this signal with f=25 Hz 
and the sampling frequency fs is set to 2kHz.
Performance of the proposed method is compared with 
that of Butterworth LPF and Wiener filter, which are 
considered as time series approaches. 

The  signal  in  equation  (12)  was  filtered  using 
the three different approaches and the time domain 
representations  of  the clean, noisy and enhanced 
signals are shown in Fig. 8 for 5dB and 0dB signal-to-
noise ratio (SNR). As the figures show, the
convolution-based filter  (the low pass filter) can 
reduce the noise, but with the cost of shifting and 
slightly changing the shape of the signal. This
deformation is proportional to the filter window length. 
Although  there  are  no  such  deficiencies  in  using 
the  Wiener  filter, the noise attenuation level is less 
than  the  proposed  method. In addition, Wiener filter 
is  not  able  to  reduce  noise in a signal with a low 
SNR. On the other hand, not only is the proposed 
method  able  to  reduce  the  noise  from  signal
without  any  considerable  distortion  or  deformation, 
but  is  able  to  reduce  noise  even  where the SNR 
value   is   very  low.  In  this  experiment,  utilizing  the 
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Fig. 8: Comparing the performance of the three different noise reduction techniques on multi-component signals 

corrupted by white Gaussian noise with SNR=5 dB (a) and SNR=0 dB (b). In each sub-plot, from top to 
bottom: clean signal, noisy signal, output of LPF, Wiener filter and the proposed approach
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                                                   (a)               (b)
Fig. 9: Considering PSD of the signals on 100 realizations to compare the performance of the three different noise 

reduction techniques on multi-component signals with SNR=5 dB (a) and SNR=0 dB (b)

genetic  algorithm  leads  to achieving the following 
optimum  parameters.  In  the case of 5dB noisy signal, 
the number of rows (l), the optimum threshold point 
(Pcut), the degree (d) and window size  (nw)  of  the

Savitzky-Golay  filter  are  equal to 352, 0.1523, 3 and 
5, respectively. On the other hand, in the case of 0dB 
noisy signal, the above parameters obtain 370, 0.2392, 
3 and 13, respectively.
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Fig. 10: Comparing the performance of the three different noise reduction techniques on LFM signals with SNR=5 

dB (a) and SNR=0 dB (b) In each sub-plot, from top to bottom: clean signal, noisy signal, output of LPF, 
Wiener filter and the proposed approach

To further evaluate performance of the three
different de-noising approaches, it is desired to compare 
Power Spectrum Density (PSD) of the clean and the 
enhanced signals. Hence, we have computed the PSDs 
of these signals using the Welch type estimation
methods on 100 realizations and the results are shown 
in Fig. 9. As the figure shows, the proposed method is 
able to retrieve the frequency information of the signal 
better than either Wiener or LPF methods, especially 
where the SNR is very low.

LFM signals: The three approaches in the previous 
experiment have been applied on linear FM signals 
considered  as  nonstationary  signals. In this
experiment, the LFM signal’s frequency begins from 1 
Hz and terminates   at   150   Hz.  The  sampling
frequency   is fs = 4kHz and  the  number  of  samples 
is N = 6000. 

The time domain representations of the clean,
noisy and enhanced signals are shown in Fig. 10.
Similar to the previous Experiment, the LPF shifts and 
deforms the signal. But deformation amount is more 
considerable compared to the previous Experiment.
This event seems reasonable, because the noise and the 
clean signal may have more overlap in frequency
regions for a LFM signal. Hence by filtering the high 
frequency bands of noisy signal, some noise may still 
be present in the filtered signal. On the other hand, 

Wiener filter has a good performance when SNR is not 
less than about 4 dB. Indeed, where the energy of noise 
is significant and SNR is low, the performance of
Wiener filter drops drastically. As can be seen in the 
figure, the proposed method is able to reduce the noise 
from the noisy nonstationary signal, even where the 
SNR is low and the frequency range of the signal is 
wide enough.

In  this  experiment,  utilizing  the  genetic
algorithm   results   in  following  optimum parameters: 
In  the  case  of  5dB  noisy  signal,  the  number  of 
rows  (l),  the  optimum  threshold point (Pcut), the 
degree (d) and window size (nw) of the Savitzky-Golay
filter are equal to 452, 0.1332,3 and 17, respectively;
and for the case of 0dB noisy signal, the above
parameters  obtain   the  values  of  473, 0.3489, 3 and 
19, respectively.

The PSD of the linear FM signals on 100
realizations have been plotted in Fig. 11. It can be
noticed that in the case of LFM signals, the PSD of the 
filtered signal using LPF may converge to the PSD of 
the clean signal at very low power/frequency
magnitudes (in dB) as properly as the one obtained 
using the proposed method. But at higher
power/frequency magnitudes, the proposed method
clearly demonstrates its prominence in retrieving the 
frequency components of the clean signal in
comparison with the other approaches.
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Table 1: The Monte-carlo simulation on 100 realizations of different SNR values for the multi-component and LFM signals

Final SNR (dB) Initial euclidean distance Final euclidean distance
Initial -------------------------------------- ---------------------------------- ---------------------------------
SNR (dB) Method Multi-component LFM Multi-component LFM Multi-component LFM

5 Wiener 12.04 10.56 245 232 128 138
LPF 7.22 7.05 245 232 231 186
Proposed approach 18.56 13.94 245 232 76 102

2 Wiener 1.55 0.51 322 276 404 506
LPF 5.41 4.05 322 276 239 226
Proposed approach 13.4 10.84 322 276 114 134

1 Wiener -5.81 -6.09 366 318 1088 1050
LPF 2.20 2.29 366 318 314 290
Proposed approach 9.65 8.23 366 318 140 167

0 Wiener -28.30 -10.24 465 470 5628 1688
LPF 2.08 1.68 465 470 325 313
Proposed approach 8.13 6.56 465 470 156 190
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                             (a)                                                                               (b)
Fig. 11: Considering PSD of the signals on 100 realizations to compare the performance of the three different noise 

reduction techniques on LFM signals with SNR=5 dB (a) and SNR=0 dB (b)

Monte-carlo simulation: In this section, we have a
performance comparison between the proposed method 
and the other approaches using the two most common 
criteria, SNR and Euclidean distance. In the first
criterion, the SNR is computed in the enhanced signal 
and then compared with that of the noisy signal. In 
using the second criterion, the Euclidean distance
between the clean and the noisy signal is computed and 
then compared with the distance between the clean and 
the enhanced signal. Whereas the convolution-based
filtering of the signal causes shifting in time domain 
and this occurrence drastically affects the value of the 

Euclidean distance, the shifting effects of the filter is 
initially removed from the filtered signal before
measuring the criterion. 

The results of Monte-Carlo simulation on 100
realizations of different SNR values for the multi-
component and the LFM signals are shown in Table 1. 
These results attest that the proposed approach has a 
better performance compared to the other existing
approaches in noise reduction. The results in this table 
indicate that while SNR of the noisy signal highly 
affects performance of Wiener filter, the proposed
method  can  enhance  the signal even at the presence of 
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very energetic noise (SNR<2 dB). Since, noise
(especially Gaussian noise) has a wide frequency
activity; LPF cannot reduce noise at their pass-band
frequency area.

CONCLUSIONS

The technique proposed in this paper is a new 
approach for signal enhancement in time domain. In 
this paper the noise subspace is initially eliminated 
from the signal subspace using the SVD-based
technique. Then the singular vectors are filtered
utilizing the Savitzky-Golay smoothing filter. The
optimal number of Hankel matrix rows, the threshold 
point where the lower singular values must be set to 
zero, the polynomial degree and window size of the 
Savitzky-Golay filter are determined using the genetic 
algorithm. Results in this paper indicate the
considerable  advantages  of  the  proposed approach 
over  the  existing  approaches  for  noise  reduction  in 
time domain.
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