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Abstract: In this paper, some basic image restoration problems are presented to introduce the importance 
of fast linear algebra algorithms. Then, an overview to some basic systolic arrays algorithms and mapping 
principles of these algorithms into systolic arrays is shown. Special attention has been done to the adaptive 
image filtering techniques. Moreover, the Singular Value Decomposition has been applied in a two-
dimensional adaptive FIR filtering technique. However, a two-dimensional adaptive algorithm based on a 
Singular Value Decomposition (SVD) method will be presented using systolic arrays that is applied in the 
area of image processing. 
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INTRODUCTION

In image processing we are dealing with
deterministic and stochastic representations of images 
that improve the quality of images by removing
degradation presented on image. In the process of the 
image restoration we try to restore an image from
degraded one so that it is as close as possible to the 
original image. Some degradation contains random
noise, interference, geometrical distortions, loss of
contrast, blurring effects, etc... 

Image restoration problem can be described as a 
problem of determining an appropriate inverse function 
to the degradation procedure. This is actually a two-side
problem, first identifying the distortion function and 
then computing its inverse. Both can be combined into 
a single procedure. The most important problem is that 
image restoration is an ill-conditioned problem at best 
and a singular problem at worst. 

For image restoration in a digital comp uter, it is 
assumed that the input images of the procedure are in 
discrete form. Several linear algebra tools may be
applied to find the solution if the degradation is a linear 
procedure.

In all known methods, dealing with enormous data 
and fast and effective algorithms or structures have to 
be applied. The same problem arises in the area of 
image reconstruction, where a high resolution images 
should be reconstructed or object by processing data 
obtained from views of the object from many different 
perspectives where such a problem is a reconstruction 
of the 3-D object from 2-D projections in tomography. 

Convolution methods and Fourier transform techniques 
are extensively used in this area. 

SYSTOLIC LINEAR ALGEBRA APPLICATIONS

An overview of the problem: Systolic array is defined 
as a connected set of processors with rhythmical data 
computation and propagation along the system [1]. In 
systolic arrays data is pumped from cell to cell among 
the array and the required computations are performed 
concurrently  in the cells. All transforming procedures in
systolic  array  can  be grouped into the following 
classes [2]: 

• Direct mapping from the algorithm-representation
level to the systolic architecture, 

• Mapping from the algorithm representation over 
algorithm model into hardware, 

• Mapping of the previous designed architectures 
into a new architecture, 

• Symbolic transformations and transformations. 

Among the researchers S.Y.Kung’s approach [4] is 
very popular, where the algorithm is presented by
Signal Flow Graph (SFG). After some operations the 
resulting Signal Flow Graph with operation and delay 
modules maps straightforward into the systolic array. 

Most modern DIP applications are based on linear 
algebra algorithms. In sequential algorithms the
complexity of the algorithm depends on the required 
computation and storage capacity. The complexity
analysis   of   the  parallel  algorithms  includes  another 
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Fig. 1: Some examples of systolic arrays: (a) Triangular array, (b) square array, (c) BLA array, (d) hexagonal array 

important parameter, the communication required.
Therefore in massive parallel computation the most 
important factors are: computation, communication and 
memory.

Data distribution limitations and finite number of 
processing elements restrict our selves to a special class 
of applications, where recursions and the local
dependency play very important role. These restrictions 
influenced the generality of the possible mapping
procedures.

Systolic array algorithms: After tasks identification
and possible VLSI architectures, new algorithms with 
degree of parallelism and regularity, with low
communication overheads have to be developed [6]. 

Array algorithm is a set of rules solved with a finite 
number of steps on a multiple number of locally
connected processors. The array algorithms are defined 
by synchronicity, concurrency control and granularity 
and communication geometry. A tool of systolic
algorithms  design  has  been  proposed  by  Leiserson 
and Saxe [7]. 

This criterion defines a special class of algorithms 
that are recursive and locally dependent. The great 
majority of digital image processing algorithms possess 
such properties as shown in Fig. 1.

Basic linear algebra algorithms used for image
processing: Digital image processing encompasses
broad spectrum of mathematical methods. They are
transform techniques, convolution, correlation
techniques in filtering processes and set of linear
algebraic methods like matrix multiplication, pseudo
inverse calculation, linear system solver, different
decomposition methods, geometric rotation and
annihilation. Generally we can classify all image
processing algorithms into two groups: basic matrix
operations and special image processing algorithms.
Fortunately, most of the algorithms fall in the classes of 

the matrix calculations, convolution, or transform type 
algorithms. These algorithms possess common
properties such as regularity, locality and recursive
ness.

In this paper, the speedup of a parallel algorithm is 
defined where it can be defined as a ratio of the
corresponding sequential and parallel times. If we
define:

• Np as number of processors 
• Tn time required by the algorithm for n processors, 
• T1 time required by the same algorithm for one 

processor, then the speedup is Ti/Tn>1 

Another important parameter is efficiency of the 
calculation defined as T1/(NpTn)

Inner vector multiplication: Inner product of two n 
dimensional vectors x and y is close to this number of 
steps.

This   product   is   obtained   as   product  of the 
row  vector  u^T  and  the  column  vector  v  and  can 
be given as:

m

i ij j
j 1

y a x
=

=∑

Sequentially it can be computed in (2n-1) steps, on 
parallel computer with n processors it can be computed 
in 1+log n steps. The speedup of the parallel version is 
approximately 2n/log(2n) and the achieved efficiency is 
2/log(2n).

Matrix-vector multiplication: Matrix-vector
multiplication algorithm of an n×m matrix A with a
vector x of dimension m results in Y=Ax

Where  y  is  an  n  element vector. The i-th
element of y is defined as: 
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Fig. 2: Processor array for matrix-vector multiplication

m

ij j
j 1

yi a x
=

=∑

where aij is of the matrix A. The Uniform Linear
processor Array structure is convenient for this
operation where one data stream is flowing to the right 
and the other data stream is flowing top down (Fig. 2). 

The proposed parallel solution uses linear
processor array with n processor elements required. The 
total execution time of the algorithm equals t=2n-1.

Matrix-matrix multiplication: Matrix-Matrix
multiplication algorithm of an n×m matrix A with n×p 
matrix B results in new matrix denoted by C of
dimension m×p. Matrix C is given by C=A·B where the 
elements are defined as: 

n

ij ik kj
k 1

c a b
=

=∑

This method can be realized with the array of
processors of dimension m×p. The principle is the same 
as on Fig. 3. The connections are realized in horizontal 
and in vertical directions. Therefore the mesh
connections of Linear processor Array structure is
convenient for this operation where the data stream of 
matrix B is flowing to the right and the data stream of 
matrix A is flowing top down. The elements of matrix 
C are stored in the appropriate processors of the array. 
In the case of the matrix-matrix computation the
expected speedup is

3n
O

log n

 
   

Linear equation solvers: Solving a system of linear 
equations is one of the most important problems in DIP. 

Fig. 3: Triangular array for QR decomposition

The problem is to find the solution vector x of
dimension (n×1) for a given n linear equations Ax=y, 
where A is nonsingular matrix of dimension (n×n). The 
problem can be solved by computing an inverse matrix 
A^-1, that is A^-1 x=y. This inversion matrix
computation procedure is computationally very
intensive and procedure is numerically unstable. The 
approach using the triangularization procedure is often 
in use to triangularize matrix A. An upper triangular 
system A*x = y*, where is an n×n upper triangular 
system is finally solved by back-substitution.

In the numerical analysis literature there are many 
matrix triangularisation methods as Gauss elimination, 
QR and LU decomposition or other methods. Also 
other effective methods for solving the system of
equations exist. They are bidiagonalization methods
and Singular Value Decomposition methods. 

Different techniques may be applied to obtain
triangular matrix decomposition. The most commonly 
used are methods using Givens rotations or
Householder reflections. Although Householder
reflections are proven to be more efficient in sequential 
algorithms, this is not the case for parallel execution. 
Using O(n) processors, direct implementation of
Householder’s reduction and the Gram-Schmidt
algorithm require O(n.log n) steps. Given’s reduction 
can be modified to produce a parallel algorithm in O(n) 
steps with the same number of processors. The QR 
tridiagonization procedure uses Givens rotations to
annihilate     lower     triangular    elements.    For   each 



World Appl. Sci. J., 6 (1): 45,52  2009

48

Fig. 4: Systolic array implementation of the Jacobi decomposition 

annihilation, one rotation is to be performed. The entire 
process of tridiagonization could be written as: 

                  R = QTA

                QT = Q1 ⋅ Q2 ⋅ … ⋅ Qk ⋅ … ⋅ Qn

                 Qk = Q(k,k+n) ⋅ … ⋅ Q(k,n)

ki ki(k,j)

ki ki

1 0
cos sin

Q
sin cos

0 1

 
 θ θ =
 − θ θ
 
  

ki
ki

kk

a
arctan

a
θ =

After the algorithm has been transformed into a 
system of uniform recurrence equations, the mapping to 
a systolic structure is straightforward. The result is a 
triangular systolic array, as shown on Fig. 3. 

Two different purpose processor elements are used. 
Elements on the diagonal are simply delay elements 
used to transfer the values of b coming from the top to 
the right. Other elements perform Givens parameter
generation in the first operational step and Givens 
rotations afterwards. The results can be obtained from 
the right side of the array. 

Actually, n(n-1)/2 processor elements are required, 
as the delay elements on the diagonal of the array are 
can simply be realized using registers instead of
processor elements. 

Another important methods in image processing 
are eigenvalue/eigenvector and singular value/vector
decomposition  methods.  Some  parallel  algorithms 
have  been  developed  like  parallel  version of the 
Jacobi and Jacobi-like algorithms, QR algorithm for
obtaining several eigenvalues of a symmetric
tridiagonal matrix [10], etc. 

Jacobi algorithm is described in Golub [11] and in 
Wilkinson, Reinsch [12]. A real symmetric matrix A 
can be reduced to the diagonal form by a sequence of 
plane rotations. In practice this iterative process of
reduction of the off-diagonal elements is terminated 
when these of-diagonal elements become negligible
comparing to the elements on the main diagonal.
Classical Jacobi algorithm eliminates the element in the 
position (p, q) and its symmetric counterpart. The main 
task is to find a sequence of reduction the off-diagonal
element in parallel, where we are not concerned about 
destroying zeros that we previously introduced. It is 
possible to eliminate more than one element
simultaneously in one sweep. Maximal number of the 
annihilated  off-diagonal  elements  in  one  sweep  is 
(n2-n)/2 pairs. In approximately few (8) sweeps the
matrix becomes practically diagonal. The diagonal
elements represent the eigenvalues ant he products of 
individual transformations are taken as the
eigenvectors. In the structure of O(n2) processors, one 
sweep requires O(n) steps yielding a speedup over
sequential algorithm of O(n2). The suggested array is 
shown on Fig. 4. 

Other methods reduce the matrix to a tridiagonal 
form or upper Hessenberg form, depending if matrix is 
symmetric or not. If the matrix is symmetric
tridiagonal, we may apply the QR algorithm. This
method is described in Reisch Wilkinson [12]. 

Singular Value Decomposition of matrices is
useful in multidimensional image processing. Matrix A 
can be factorized in T

1 2Q QΣ Q, where Q1 
1

is an mxm 
orthogonal matrix and Q

2
is an nxn orthogonal matrix 

and S has the diagonal form 

1 2 n
D 0

whereD diag( , ,...., )
0 0

Σ = = σ σ σ

1 2 r... 0andr i s rankof ma t r ixAσ ≥ σ ≥ σ ≥
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TheformA Q Q u v
=

= Σ = σ∑

is called the SVD of the matrix A, where the singular 
values σi are the square roots of the none zeros
eigenvalues of AT and ui and vi are column vectors of 
the matrices Q

1
and Q

2
respectively. The column vectors 

of Q
1

and Q
2

are the eigenvectors of ATA.
The preferable method for solving the SVD

problem is described in Golub and Van Loan [11]. The 
described technique finds U and V simultaneously by
simply applying the symmetric QR algorithm to ATA.
This method can be also applied for solving the
common problem in signal and image processing, the 
least square problem. 

THE SVD AND SYMMETRIC 
EIGENVALUE PROBLEMS

Singular value decomposition (SVD) of a real m by 
n  matrix  A  is  its  factorization  into  the  product  of 
three matrices:

                                 A = UΣVT (3.1)

where U is an m by n matrix with orthonormal
columns, Σ is an n by n nonnegative diagonal matrix 
and V is an n by n orthogonal matrix (we assume here 
that m >= n).

The diagonal elements σi of Σ are the singular 
values of A. The singular value decomposition is
extremely  useful  in  digital  image processing. The 
SVD is usually computed by a two-sided
orthogonalization process, e.g. by two-sided reduction 
to bidiagonal form (possibly preceded by a one-sided
QR reduction) followed by the QR algorithm. On a
systolic array it is simpler to avoid bidiagonalization 
and  to   use  the  two-sided  orthogonalization  method 
of Kogbetliantz et al. [14-16] rather than the standard 
Golub  Kahan  Reinsch   algorithm.  However,  it  is 
even simpler  to  use a one-sided orthogonalization 
method due to Hestenes. The idea of Hestenes is to 
iteratively generate an orthogonal matrix V such that 
AV has orthogonal columns. Normalizing the
Euclidean   length of   each  nonnull  column  to  unity, 
we get

AV U= Σ (3.2)

As a null column of U  is always associated with a 
zero diagonal element of Σ, there is no essential
difference between (3.1) and (3.2).

There is clearly a close connection between the 
Hestenes method for finding the SVD of A and the 
classical Jacobi method for finding the eigenvalues and 
eigenvectors of ATA. This is discussed in Section 3.4.

Implementation of the Hestenes method: Let A1 = A 
and V1 = I. The Hestenes method uses a sequence of 
plane rotations
Qk chosen to orthogonalize two columns in Ak+1 = 
AkQk. If the matrix V is required, the plane rotations 
are accumulated using Vk+1 = VkQk. Under certain 
conditions (Discussed below) limQk = I, lim Vk = V
and limAk = AV. The matrix Ak+1 differs from Ak
only in two columns, say columns i and j. In fact

( ) ( )(k 1) (k 1) k k
i ji j

cos sin
a ,a a ,a

sin cos
+ + θ θ 

=  − θ θ 

where the rotation angle θ is chosen so that the two new 
columns (k 1)

ia +  and (k 1)
ja +  are orthogonal. This can 

always be done with an angle θ satisfying

                                     |θ|≤π/4 (3.3)

It is desirable for a “sweep” of n(n-1)/2 rotations 
to include all pairs (i, j) with i < j. On a serial machine a 
simple strategy is to choose the “cyclic by rows”
ordering (1, 2), (1, 3), · · ·, (1, n), (2, 3), · · ·, (n - 1, n).

It has been shown [17] that the cyclic by rows 
ordering and condition (3.3) ensure convergence of the 
Jacobi method applied to ATA and convergence of the 
cyclic by rows Hestenes method follows.

The symmetric eigenvalue problem:  As noted above, 
there is a close connection between the Hestenes
method for finding the SVD of a matrix A and the 
Jacobi method for finding the eigenvalues of a
symmetric matrix B = ATA An important difference is 
that the formulas defining the rotation angle θ involve 
elements bi,j of B rather than inner products of columns 
of A and transformations must be performed on the left 
and right instead of just on the right (since (AV)T (AV) 
= VT BV) instead of permuting columns of A, we have 
to apply the same permutation to both rows and
columns of B. This is easy if we use a square systolic
array of n/2 by n/2 processors with nearest-neighbor
connections (assuming, for simplicity, that n is even). If 
less than n^2/4 processors are available, we can use the 
virtual processor concept. For example, on a linear
systolic array with P <= n/2 processors, each processor 
can simulate ~ n/(2P) columns of n/2 virtual processors.

Similarly, on a square array of P _ n2/4 processors, 
each processor can simulate a block of ~ n2/(4P) virtual 
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processors. In both cases, communication paths
between virtual processors map onto paths between real 
processors or communication internal to a real
processor.

Other SVD and eigenvalue algorithms: As shown 
above, the Hestenes method could be used to compute 
the SVD of an m by n matrix in time O(mn^2S/P) using 
P = O(n) processors in parallel. 

Here S is the number of sweeps required
(conjectured to be O(log n)). In Section 3.4 we sketched 
how Jacobi’s method could be used to compute the 
eigen-decomposition of a symmetric n by n matrix in 
time O(n^3S/P) using P = O(n^2) processors. It is 
natural to ask if we can use more than (n) processors 
efficiently when computing the SVD. The answer is yes 
and this can be used to compute the SVD of a square 
matrix using a parallel algorithm very similar to the
parallel implementation of Jacobi’s method. The result 
is an algorithm which requires time O(n^3S/P) using P 
= O(n^2) processors. 

In order to find the SVD of a rectangular m by n 
matrix A using O(n^2) processors, we first compute the 
QR factorization QA = R and then compute the SVD of 
the principal n by n sub matrix of R (i.e. dis card the m 
- n zero rows of R). It is possible to gain a factor of two 
in efficiency by preserving the upper triangular
structure of R.

The Hestenes/Jacobi/Kogbetliantz methods are not 
often used on a serial computer, because they are
slower than methods based on reduction to bidiagonal 
or tridiagonal form followed by the QR algorithm.
Whether the fast serial algorithms can be implemented 
efficiently on a parallel machine depends to some
extent on the parallel architecture. For example, on a 
square array of n by n processors it is possible to reduce 
a symmetric n by n matrix to tridiagonal form in time 
O(n log n). On a serial machine this reduction takes 
time O(n^3). Thus, a factor O(log n) is lost in
efficiency, which roughly equates to the factor O(S) by 
which Jacobi’s method is slower than the QR algorithm 
on  a  serial  machine.  It  is  an open question whether 
the loss in efficiency by a factor O(log n) can be
avoided on a parallel machine with P = (n^2)
processors. When P = O(n), “block” versions of the
usual serial algorithms are attractive on certain
architectures and may be combined with the “divide 
and conquer” strategy. 

LS SVD DIGITAL IMAGE FILTERING

For illustration, the use of singular value
decomposition in two-dimensional filtering applications
will  be  presented.  First,  the  Wiener  solution  will be 

extended to two-dimensional problem, introducing
special formulation of an image signal matrix. The
problem will be solved algebraically with two-
dimensional convolution filter implemented. The
Wiener normal equation will be solved by using
singular value decomposition of the image signal
matrix. The effectiveness of the suggested method will 
be illustrated on a practical filtering problem. 

Image restoration: We have decided to represent the 
degradation model for our imaging system in a form of 
discrete linear point-spread degradation functions. For 
discrete image F degraded to image G and subjected to 
additive noise N, we may write 

N N

u 1 v 1

g(x,y) h(x,y,u,v)f(u,v) n(x,y)
= =

= +∑∑

or, alternatively, in tensor notation 

[G] = [[H]]{[F]}+[N]

with two-dimensional matrices G, F and N and using 
the four-index operator H [22]. 

The objective of restoration is to find an inverse to 
the degradation function. The solution presented is not 
valid for all cases of image degradation. In some cases 
it is possible to use convolution filter to restore the 
image. The solution may then be represented in a form 
of F̂ W**G= with symbol ** standing for 2-D
convolution. We have to point out that the solution in
such a formulation exists only for linear, space-
invariant distortion functions with finite (space-limited)
response. The general adaptive filter representation for 
this case is illustrated in Fig. 4. 

The filter operates on a real image (matrix) X that
is corrupted with noise. The desired signal (reference 
image) is also provided. The filtering parameters can be 
represented in form of an N×N matrix W and the
filtering process may be represented by convoluting the 
image input X with the matrix W. During the
adaptation, the filtering weights may be changed in 
order to obtain optimal solution. The filtering result is 
given by 

M M

i 0 j 0

f̂(x,y) w(i,j)g(x 1 k,y 1 k)

M 2k 1
= =

= + − + −

= +

∑∑

The difference between the desired and the
resulting image 
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Fig. 4: SVD based 2-D adaptive filter

ˆe(x,y) f(x,y) f(x,y)= −

is called the estimation error. From Wiener filter theory, 
optimal filtering coefficients W are defined by the
minimum mean-square error criteria. The objective
function J(W) = E[e2(x, y)] should be minimized for W 
to obtain the optimum filter. 

For this particular example, Wiener optimal
solution is to be applied. The idea is well known from 
1-D adaptive filtering, where instantaneous estimates of 
gradient of the error surface J(W) are used to approach 
the optimum solution iteratively. The algorithm is
popularly called LMS algorithm. It is possible to extend 
the algorithm to be used in both x and y image
dimensions,  iteratively  searching  for the solution 
either column wise or row wise. The procedure is
numerically convenient due to low storage and
computing requirements. The problem of this approach 
is that the instantaneous estimates of the error surface 
have relatively large variances. The estimate of their 
gradient vectors may then not always be pointing to a 
global optimum; the fact could cause unstable
performance of the algorithm. The stability may be
improved using smaller adaptation step-size, however 
this seriously affects the convergence rate of the
procedure.

As already suggested, the normal equation Rw0 = p 
is  to be solved for w, using special inversion
techniques. The one proven to be very efficient is the 
method using SVD matrix decomposition. 

Singular value decomposition: One of the methods for 
the stable inversion process of the matrix R = XTX is 
called SVD pseudo-inversion, which is better than to 
calculate straight inverse of R-1 = XTX-1. The solution 
for W can be expressed directly as w0 = X+d where 
pseudo-inverse X+ is defined in terms of the products of 
the singular-value decomposition of UTXV = Σ of X.
The procedure is numerically stable and its solution is 
unique in that its vector norm is minimum [18]. 

Convolution operator W can be created by
restacking the values of the vector w back to the MxM 
matrix form: 

2

i

M T
i

i
i 2i 1

0

w(1) w(M)
u d

w v W

w(M(M 1) 1) w(M )=
σ ≠

 
 = = σ  − + 

∑


  



The non-iteratively calculated filtering parameters 
are optimal for the specific image/distorted image
combination. They may be directly applied in a
classical two-dimensional convolution filter. 

Implementation of the procedure: The procedure may 
be implemented as a systolic array algorithm. The
actual algorithm is to be combined out of partial linear 
algebra solutions presented above. Note that the array 
to perform singular value decomposition is almost
identical to eigendecomposition array. 

The simulation results show that the Wiener
filtering principle can successfully be implemented in 
image restoration. Methods well known from the linear 
algebra theory that may be applied instead of classical 
methods based on Fourier transformation. The
effectiveness of the procedure may be improved using 
special updating techniques. 

CONCLUSIONS

Characteristically for almost all presented linear
algebra operations that suggested already have been 
used in digital image processing applications are
consisting of a huge number of relatively basic
mathematical operations. The fact that the operations 
are repetitive, yet applied on a wide set of data inspired 
us to employ several processor elements performing the 
same task on separate data elements in parallel. Special 
properties of the mentioned processing problem allow 
us to construct a massive array of equal processor 
elements, which concurrently perform the necessary 
numerical operations. 

There exist several well-known parallel computer 
architectures; the architecture may vary according to 
the  applied  processor  elements, reconfigurability, data 
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interchange connections, etc. The architecture to be 
applied on a specific problem depends mostly on a 
problem itself. As the digital image processing demands 
high speed computing with fixed procedures in use at 
relatively low cost, general-purpose parallel computers 
are not convenient for use. Digital image processing is a 
data-oriented computing problem, so architectures with 
global data interchange are to be omitted. What we 
really need is an array of locally interconnected
processor elements with local memory. The processor 
elements should synchronously perform the same set of 
operations on the data structure. This architecture is a 
systolic array - the rhythmical operation of the array 
reminds us to the systolic of the heart 

The basic approach to mapping techniques and 
some possible applications were presented in this
chapter. However, this was only a brief introduction to 
the world of special-purpose VLSI systolic architecture.
More details on the described procedures as well as on 
optimization techniques not presented here may be
found from the literature. 
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