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Abstract: This study presents a novel dynamic modelling of a rigid serial manipulator using a compact 
formula of inertia tensor to simplify dynamic modelling and mathematical transformations. The matrix
transformation is used appropriately as a powerful tool for this purpose. The kinetic energy, the potential 
energy and the inertia matrix of manipulator all are formulated in Denavit-Hartenberg frames (D-H) for 
deriving the dynamic model. This modelling approach is derived directly from the kinematic results in D-H
frames. The proposed approach is simpler with fewer calculations in comparing with conventional 
approach which requires additional calculations in the center of mass frames (COM). The extreme
calculations in the conventional approach are done to form inertia matrix of manipulator where the terms of 
manipulator Jacobian must be reformed due to COM frames. 
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INTRODUCTION

The dynamic equations of manipulators can be
simplified using suitable coordinate frames to analyze 
the mo tion of manipulators. The coordinate frames can 
be chosen based on the configuration of manipulator 
and the geometry of motion for kinematic and dynamic 
analysis. The Denavit-Hartenberg convention is
commonly used to select the coordinate frames for
formulating the kinematic problem of serial
manipulator [1]. The obtained presentations and frames 
from kinematic solutions can be used for formulating 
the dynamic equations. However, the complexity
increases for dynamic modelling in frames which are 
not attached to the center of mass of links. The
complications will arise with computing inertia tensor 
of a moving rigid body in a fixed frame. 

One solution is to apply COM frames for
simplifying the dynamic calculations. These frames are 
attached to the links located on the center of mass of 
links since the inertia of each link will be fixed into the 
attached frame. However, COM frames are not used in 
D-H convention and the forward kinematic results are 
not provided in them. Thus, the provided calculations 
are then transformed. Therefore, there will be many 
calculations to cope with these frames for deriving the 
dynamic equations.

In this study, a mathematical approach is proposed 
to solve this problem by transforming inertia tensor. A 
compact and simple form of inertia tensor will be
presented  for  applying  the required transformations. 

Inertia matrix has been widely used in the modeling of 
kinematics and dynamics of robotic mechanisms [2]. 
An operational space inertia matrix was derived using 
matrix transformations to reflect the dynamic properties 
of a robot manipulator to its tip [3]. The principles and 
applications of tensors are considered in the linear
algebra [4, 5]. Skew symmetric matrixes, rotation
matrixes and homogeneous transformations of frames 
are well used to derive the kinematic and dynamic
equations of a manipulator in rigid motions [6].

Dynamic modeling of manipulators is a very active 
field of research. Dynamic equations of motions can be 
used to investigate the system responses and system 
properties. The system stability is one of the main 
active fields of research which is based on dynamic 
equations. Many approaches based on the dynamic 
equations were presented on dynamic, control,
identification and simulation of manipulators [7-9].
Model based control approaches play significant roles 
to control manipulators.

Euler-Lagrange Equations are frequently used in 
the field of dynamic modelling of manipulators,
especially for modelling of rigid serial manipulators 
such as industrial robot manipulators. The dynamic 
model of a gear-driven rigid robot manipulator was 
derived using the Lagrange formulation [10]. The point 
and joint coordinates were applied to model a serial 
robot manipulator [11]. The analytical dynamic model 
was derived for six-DOF industrial robotic
manipulators of containing closed chain [12]. The
principle  of virtual work and the Lagrange method was 
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used  to  standard  dynamics  formulation  of 6 degree 
of  freedom  fully  parallel  manipulator with elastic 
joints [13].

Applications of Euler-Lagrange Equations were
extended for parallel manipulators where a recursive
matrix method was used to model the manipulator [14]. 
However, there is a contradiction of conditions to apply 
the Euler-Lagrange equations for flexible mechanisms. 
Alternatively, the numerical solutions were used for
dynamic  modelling  of  non-rigid  manipulators  such 
as a rigid-flexible manipulator [15] and for a flexible 
manipulator [16]. The Lagrange finite element
formulation was used for dynamic modeling of a
flexible-link planar parallel platform [17].

SKEW SYMETRIC MATRIX

Some properties of these matrixes are introduced as 
follows [6]. 

                                   S + Sr = 0 (1)

where, S denotes a 3×3 skew symmetric matrix. The 
skew symmetric matrix is introduced as

z y

z x

y x

0 a a
S( ) a 0 a

a a 0

 −
 = − 
 − 

a (2)

where, a is a vector of the form a = [ax, ay, az]T. Skew 
symmetric matrix is a linear operator such that

S( ) S( ) S( )α + β = α +βa b a b (3)

where, α and β are real constants, a and b are vectors. 
The cross product of two vectors can be computed as 

S( )× =a b a b (4)

Since the skew symmetric matrix is a linear
operator, the derivative and integral of skew symmetric
matrix leads to

S( ) S( )=a a  (5)

S( )dt S( dt)=∫ ∫a a (6)

A relation between the skew symmetric matrix and 
a rotation matrix is introduced by

TS(Ra) RS( )R= a (7)

where, R is a 3×3 rotation matrix and a is the rotation 
axes of rotation matrix. R is an orthogonal matrix such 

that RRT = I and I is a unit matrix. The time derivative 
of rotation matrix is computed as:

TR S( )R= ω (8)

where, ω = θa  is angular velocity vector and θ  is the 
angular velocity of the rotation matrix.

KINETIC ENERGY

Assume a rigid body denoted b is rotated with 
respect to a fixed reference frame denoted A. Attach a 
coordinate frame named B to the body b. Position of a 
point p on the body b in the frame A is calculated as:

B
AR= + B

A B Ap p d (9)

where, pB is the position of point p with respect to the 
frame B and B

AR  is a 3×3 rotation matrix to specify the 
orientation of the coordinate frame B relative to the 
frame A.

Velocity of point pA is computed by time derivative 
of pA as follows:

B
AR= + B

A B Ap p d  (10)

The kinetic energy denoted by K can be calculated as:

b

1
K dm

2
= ∫ T

A Ap p  (11)

Substituting (10) into (11) yields 

B T B
A A

b

1
K (R ) (R )dm

2
= + +∫ B B

B A B Ap d p d    (12)

By expanding (12), we have

B T B T B
A A A

b b

B T T
A

b b

1 1
K (R ) R dm R dm

2 2
1 1

(R ) dm dm
2 2

= +

+ +

∫ ∫

∫ ∫

B
B B A B

B B B
B A A A

p p d p

p d d d

   

   
(13)

The second term is equal to the third term in 
Equation (13) since both are scalar and are transpose to 
each other. So

T B B T
A A

b b

1 1
R dm (R ) dm

2 2
=∫ ∫B B

A B B Ad p p d    (14)

Since B
Ad  and B

AR are not dependent to m, 

T B B T B
A A

b b

R dm R dm=∫ ∫B
A B A Bd p d p    (15)
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The center of mass can be calculated as:

B
b

1
dm

m
= ∫ Br p (16)

where, rB denotes the center of mass vector described in 
frame B. Substituting (16) into (15), yields

T B B T B
A A B

b

R dm m R=∫ B
A B Ad p d r    (17)

Use of (8) for B B
A AR S( )R= ωB

A
  leads to:

B T B B T B
A Am R m S( )R= ωB

A B A A Bd r d r   (18)

Interchanging for B B
A B A BS( )R S(R )ω =−ωB B

A Ar r and use 
of (7) to have B B B T

A A AS(R ) R S( )R=B Br r yields

B T B B T B B T
A B A B Am R m R S( )R= − ωB

A A Ad r d r   (19)

The forth term in (13) is simplified as:

T T

b

1 1
dm m

2 2
=∫ B B B B

A A A Ad d d d    (20)

Substituting B B
A AR S( )R= ωB

A
  into the first term of 

(13), yields

B T B
A A

B

B T B
A A

B

1
(R ) (R )dm

2
1

(S( )R ) (S( )R )dm
2

= ω ω

∫

∫

B B

B B
A B A B

p p

p p

 

(21)

By B B
A AS( )R S(R )ω =−ωB B

A B A Bp p , we have

B T B B T B
A A A A

B b

T B T B
A A

b

1 1(R ) (R )dm (S(R ) ) S(R ) dm
2 2

1 S(R ) S(R ) dm
2

= ω ω

= ω ω

∫ ∫

∫

B B
B B B A B A

B B
A B B A

p p p p

p p

 

(22)

Since ωB
A  is not dependent to m, so

B T B T B T B
A A A A

B b

1 1(R ) (R )dm ( S(R ) S(R )dm)
2 2

= ω ω∫ ∫B B
B B A B B Ap p p p  (23)

From B B B T
A A AS(R ) R S( )R=B Bp p

B T B
A A

B

T B T B T B B T
A A A A

b

1
(R ) (R )dm

2
1

( R S( ) R R S( )R dm)
2

=

ω ω

∫

∫

B B

B B
A B B A

p p

p p

 

(24)

B
AR  is an orthogonal matrix, thus BT B

A AR R I= . This 
results in

B T B
A A

B

T B T B T
A A

b

1
(R ) (R )dm

2
1

( R S( ) S( )R dm)
2

=

ω ω

∫

∫

B B

B B
A B B A

p p

p p

 

(25)

Since B
AR  is not dependent to m, so

B T B
A A

B

T B T B T
A A

b

1
(R ) (R )dm

2
1

R ( S( ) S( )dm)R
2

= ω ω

∫

∫

B B

B B
A B B A

p p

p p

 

(26)

We define

T
B

B

I S( ) S( )dm= ∫ B Bp p (27)

Substituting IB into (26), yields

B T B T B BT
A A A B A

B

1 1
(R ) (R )dm R I R

2 2
= ω ω∫ B B

B B A Ap p  (28)

Consequently

B T B B T B BT B BT B BT
A A B A A A B A

1 1K m R I R m R S( )R
2 2

= + ω ω − ωB
A A A Ad d d r   (29)

INERTIA TENSOR

We explain (27) that is a compact form of inertia 
tensor of the rigid body b as follows. Assume the origin 
of frame A is the center of mass and to be coinciding on 
origin frame B, means in the case of rotational motion 
about the center of mass, the kinetic energy is
calculated as

B
A0, R= =B

A A Bd p p (30)

B T B B T B
A A B A A

1
K R I R

2
= ω ω (31)

Compare the kinetic energy obtained by (31) with 
the definition of kinetic energy in this case,

T1
K I

2
= ω ω (32)
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where, ω is the angular velocity in the fixed frame and I
is the inertia tensor of body in the fixed frame, it is 
concluded that

B B B T
A A B A, R I R Iω = ω = (33)

Since the moment of inertia I is calculated in the 
fixed reference frame, thus

B B T
A B A AR I R I= (34)

The moment of inertia of a rigid body in the fixed 
frame, IA is calculated by a transformation of the
moment of inertia of the rigid body in the attached 
frame to the body, IB given by (34). Substituting (27) 
into (34), results

B T B T
A A A

b

I R ( S( ) S( )dmR= ∫ B Bp p (35)

Since B
AR is not dependent to m, we put B

AR into
the integral and since BT B

A AR R I= , we can put it into (35) 
to obtain

B T B T B B T
A A A A A

b

I R S( ) R R S( )R dm= ∫ B Bp p (36)

Use of (7) yields

B T B
A A A

b

I S(R ) S(R )dm= ∫ B Bp p (37)

From (30), we have

T
A A A

b

I S( ) S( )dm= ∫ p p (38)

Now, it is concluded that the inertia matrix of the 
rigid body in a desired frame D, is defined

T
D D D

b

I S( ) S( )dm= ∫ p p (39)

where, pD is the position vector of the particle dm of the 
body b described in the frame D. It will be useful if it is 
noted that the frame D is a desired frame. There are 
some points to note:

• For a case of selecting frame D attached to the 
rigid body b, the inertia matrix ID is a constant 
matrix.

• The inertia matrix ID is a symmetric matrix. It is 
verified by taking transpose of (39).

KINETIC ENERGY

We use the standard version of Denavit-Hartenbeg
convention (D-H convention) described in [6] to define 
the D-H frames. For a serial manipulator with n
independent joints which has n degrees of freedom, the 
D-H frames are defined as follows.

Links are numbered from 0 to n such that the first 
link numbered 0 (base of manipulator) and the last link 
numbered n. Joints are numbered from 1 to n. The D-H
frames are numbered from 0 to n as each frame attached 
to its corresponding link. 

The z axis of frame i is aligned with the joint i, the 
x axis of frame i is vertical and crossed to the z axis of 
frame i – 1 and the y axis of frame i is determined such 
that a right-wise coordinate frame to be formed. The x 
axis of frame 0 and the z axis of frame n are determined 
arbitrary.

The   kinetic   energy   of   the   i-th  link   given
by (29) is calculated using the Denavit-Hartenberg
representation as

i T i i T i i T i T i i T i
i i 0 0 0 0 i 0 i 0 0 i 0 0

1 1
K m R I R m R S( )R

2 2
= + ω ω − ωd d d r   (40)

where, Ii is the inertia matrix of link i in frame i, mi is
the mass of link i, ri is the center of mass of link i in 
frame i, i

0d is the linear velocity vector of frame i
respect to frame 0 and i

0ω is the angular velocity vector 
of frame i respect to frame 0 and i

0R  is the rotation of 
frame i respect to frame 0. The linear velocity
vector i

0d is given [6] as

i
0 viJ∂= =

∂

i
0dd q q

q
   (41)

where, q is the position joint vector, q is the position 
velocity vector and Jvi is defined as

vi
1 2 n

J ...
q q q

 ∂ ∂ ∂
=  ∂ ∂ ∂ 

i i i
0 0 0d d d (42)

The elements of Jvi are calculated as For j = 1,..,i

j 1
j

j 1 n j-1
j

z if joint j is revolute.
q

z [o -o ]     if joint j is prismatic.
q

−

−

∂ =
∂

∂ = ×
∂

i
0

i
0

d

d

For j = 1=1,..,n
j

0
q

∂
=

∂

i
0d
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where, zj-1 is the z axis of frame j-1, on is the origin of 
frame n and oj-1 is the origin of frame j-1.

i
0 iJωω = q (43)

where, JωI is defined as

[ ]i 1 0 2 1 n n 1J z z ... zω −= ρ ρ ρ (44)

ρ j is calculated as

For j = 1,…,i
j

j

1      if joint j  is revolute.

0      if joint j  is prismatic.

ρ =

ρ =

For j = 1+1,…,n
ρ j = 0

The inertia matrix Ii is calculated from (39) to obtain

i i i dm= ∫ T

b

I S(P) S(P) (45)

where, Pi = [x y z]T is position of particle dm in frame i 
and S(Pi) is formed by (2). Ii is a constant matrix since 
Ii is calculated in frame i. Substituting S(Pi) into (45), 
yields

i

0 z y
z 0 x
y x 0

− 
 = − 
 − 

S( P )

2 2

2 2

2 2

(y z )dm xydm xzdm

xydm (x z )dm yzdm

xzdm yzdm (x y )dm

 + − −
 
 = − + −
 
 − − + 

∫ ∫ ∫
∫ ∫ ∫
∫ ∫ ∫

CI (46)

The total kinetic energy for a manipulator is then 
computed as:

n
T T i i T T i i T

i 0 i 0 i 0 0
i 1

1K (m R I R 2m R S( )R )
2 =

= +ω ω − ω∑ i i i i i i
0 0 0 0 0 i 0d d d r   (47)

Substituting (41) and (43) into (47), yields

T1
K D

2
= q q  (48)

where, D is called the inertia matrix of manipulator.
The  kinetic  energy K is  a  positive scalar. Therefore, 

(48) yields that the inertia matrix D is a symmetric 
positive definite matrix.

n
T T i i T T i i T

i vi vi i 0 i 0 i i vi 0 i 0 i
i 1

D m J J J R I R J 2mJ R S( )R Jω ω ω
=

 = + − ∑ r (49)

According to (49), the transformations of D-H
frames, the link's mass and the center of mass of each 
link in its D-H frame are required to form the inertia 
matrix.

POTENTIAL ENERGY

The potential energy of body b is of the form

T

b

V dm= ∫ Ag p (50)

where, g is the gravity acceleration in frame A.
Substituting (9) into (50), yields

T B
AV (R p )dm= +∫ B

B Ag d (51)

From Equation (16) and since B
Ad is independent on 

m, we have

T B T T B
A AV m R m m (R )= + = +B B

B A B Ag r g d g r d (52)

The total potential energy is summation of the
potential energy of all links. It is of the form

n
T i i

i 0 i 0
i 1

V m (R )
=

= +∑ g r d (53)

Equation (53) shows the potential energy in D-H
frames.

DYNAMIC EQUATIONS

The Euler-Lagrange equations of motion are
applied to derive the dynamic equations of a serial
manipulator,  which  possess n degrees of freedom. The 

dynamic equations of a serial rigid manipulator [6]
given as:

D( ) C( , ) G+ + =q q q q q (q) t   (54)

where, D(q) is the inertia matrix of manipulator,
C( , )q q  is a n×n matrix related to the centrifugal and 
Coriolis terms,
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V
G( )

q
∂

=
∂

q

and ← is the joint generalized force. 
The matrix C( , )q q  is calculated from matrix D(q) as:

n
kj ijki

kj i
i 1 i j k

D D1 D
C q

2 q q q=

 ∂ ∂∂
= + −  ∂ ∂ ∂ 
∑  (55)

where, V∂
∂q

 is obtained from (53) as

i in
T 0 i 0

i
i 1

V (R )
m ( )

=

 ∂ ∂ ∂
= + ∂ ∂ ∂ 

∑ r dg
q q q

(56)

Use of 
i
0

viJ ∂=
∂
d
q

, yields

in
T 0 i

i vi
i 1

V (R )
m ( J )

=

 ∂ ∂
= + ∂ ∂ 

∑ rg
q q

(57)

The inertia matrix of manipulator D(q) is a
significant base for calculations. Therefore, the
dynamic equations can be provided in Denavit-
Hartenberg frames if we use the D(q) obtained in 
Denavit-Hartenberg frames by (49) and G(q) by (57).

CONCLUSION

Matrix  calculations  on  skew  symmetric
matrixes and rotation matrixes have been used to
manipulate the equations for deriving the dynamic
modelling of serial manipulators in the D-H frames. 
The kinetic energy and potential energy were calculated 
in D-H frames to apply the Euler-Lagrange equations. 
A  novel  compact  presentation of inertia tensor of a 
rigid body was analytically derived and used for
simplifying dynamic calculations. This modelling
approach was derived directly from the kinematic
results in D-H frames. The proposed approach is
simpler with fewer calculations in comparing with
conventional approach which requires additional
calculations in the center of mass frames (COM).
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