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Abstract: In a sequence of dependent Bernoulli trials, the distribution of the number of trials required to 
obtain r successes, Vr, is called a Generalized Negative Binomial (GNB) distribution. We present a simple 
representation of this distribution based on moments and consider the conditions under which a GNB 
distribution follows negative binomial distribution. Also we study the properties of this distribution in 
Markov chains.
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INTRODUCTION

Let i i 1{ X }∞=  be a sequence of Bernoulli trials and 
the statistic Vr be the number of trials required to obtain 
r successes (or failures). When the trials are
independent and having the same success probability p, 
the distribution of Vr is the classical negative binomial 
(NB) distribution with parameters r, p, NB (r, p). This 
statistic Vr is used in many different statistical models 
such as inverse sampling model and crash data and also 
appears in the context of statistical quality control and 
Markov chains.

Although, for many situations the independence of 
trials have been assumed without any questions, but 
practically this assumption is not very realistic and the 
trials are dependent. This dependence case has been 
studied by many authors such as Drezner and Farnum 
[1], Vellaisamy [2], Bebbington and Lai [3], Hsiau and 
Yang [4], Shishebor and Towhidi [5]. When the trials 
are dependent or non-identical, the distribution of Vr is 
called a generalized negative binomial (GNB)
distribution,  but it hasn’t been introduced a simple 
form for the probability mass function of this
distribution.

A REPRESENTATION OF GNB DISTRIBUTION

In this section, we follow up a way similar to 
vellaisamy and Punnen [6] and present a simple and 
useful representation of GNB distribution based on 
moments.

Theorem 2.1: Let i i 1{ X }∞= be a sequence of Bernoulli 
variables and Vr  be the number of trials required to 
obtain r successes, then for any integer k≥r,
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Proof: The probability mass function (pmf) of Vr  is 
given by:
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Remark 2.1: In the special case k = 1, the pmf of Vr
can be written as a simple form: 
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and is called a Generalized Geometirc (GG)
distribution.

If the observations are exchangeable, then for any 
1≤j≤k-1, Tjk, will be equal to:
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and hence the pmf of Vr has a simple form as:
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In the following theorem, we present a necessary 
and sufficient condition for the distribution of Vr to be a 
negative binomial.

Theorem 2.2: Under the assumptions of theorem 2.1, 
Vs ~ NB (s, p) ∀s ≥r
if and only if
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Proof: If the relation (2.2) holds for any k≥r; r – 1≤ j ≤
k-1, then for each s≥r the pmf of VS will be as follows:
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By taking t = j – (s – 1), we have
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Which proves that the distribution of VS is NB (s, p). 
Conversely, if Vs ~ NB (s, p) ∀s ≥ r, then the relation 
(2.2) can be derived by theorem 2.1 and tracing the 
following steps:
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(t) In step t, by using the steps 1 to (t-1) and the 
relation (2.1) we have:
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THE DISTRIBUTION OF Vr
IN MARKOV CHAINS

In this section we justify the distribution of Vr in
Markov chains and interpret some properties of them. 
In a serially-dependent production process, the
probability of finding a conforming or nonconforming 
unit depends on the status of the immediately preceding 
unit produced. This process can be represented by a 
two-state Markov chain with transition matrix

F S
F 1 a a

P
S b 1 b

− 
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(3.1)

where
( )n 1 na P X S | X F+= = =

and
( )n 1 nb P X F | X S+= = =

In considering such a stochastic process, the
distribution of Vr (the number of trials required to 
obtain r occurrences of the event S) can be stated by the 
following recursive formulas:
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Where

( ) ( )0 0P . P . | X 0= =  and ( ) ( )1 0P . P . | X 1= =

Remark 3.1: Let V1 be the numb er of trials required to 
the first success and P (V0 = 0) = 1, then the pmf of V1
follows from the relations (3.2),
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Also, the distribution function of V1 is obtained by:
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where ν∈ℜ, ν≥r and [.] denotes the integer part.
The following theorem shows that in a markov 

chain, GNB distribution of Vr arising out of r
independent random variables with generalized
geometric (GG) distributins.

Theorem 3.1: In a two-state Markov chain with
transition matrix (3.1), the characteristic function of Vr
takes the form:
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where φi
r (⋅) is the characteristic function of Vr with 

X0 = i.

Proof: First by using the formulas (3.2), we conclude
that:
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And   hence   we   can   find   a  recursive  formulas  for 
φi

r (⋅) as:
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According to Remark 3.1, the characteristic
function of V1 is equal to:
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Therefore we can specify the characteristic
function of Vr as the formulas (3.5).

Remark 3.2: By using theorem 3.1 and the fact that the 
distribution of Vr is the same as sum of r independent 
random variables with GG distributions, we can find 
the expectation of Vr.
Define
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