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Abstract: In this paper the design of an observer for Multi-input Multi-output (MIMO) systems using 
eigenstructure assignment and the employment of this observer for fault diagnosis are investigated. 
Moreover, the designed observer will be implemented in a model of unmanned aircraft. Furthermore, the 
state feedback design with eigenstructure assignment has been accomplished on the aircraft. The design 
aim is to obtain suitable gains for the observer and the state feedback, as well. Using this method, a 
complete parametric expression for the observer gains and the state feedback gains are established in terms 
of a set of parametric vectors and closed loop poles. The existence of a set of parametric vectors and closed 
loop poles represents some degrees of freedom in the design. The simulation results corroborate the 
effectiveness and simplicity of the proposed method.
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INTRODUCTION

In recent years, automatic control systems and 
relevant algorithms are becoming complicated. For the 
complex systems, there is no absolute guarantee over 
their safety performances and therefore, much
improvement in order to enhance reliability and safety 
of systems is still desirable. This could be achieved not 
only by applying much reliable components, but also by 
designing properly Fault Detection and Isolation (FDI) 
units. So called "Fault", sounds malfunction in real
dynamic system that may lead to fail the overall system. 
Fault detection unit provides a mechanism to identify 
and isolate faults. Analytical techniques require a model 
or mathematical descriptions of the system to detect 
faults. It means that during simultaneous operations of 
analytical model and real system, if a different behavior
is observed, fault detection unit acts immediately. For 
this purpose, an observer is used and faults are judged 
due to residual signal. Therefore, to attain a good 
estimation of system output, an appropriate observer 
design is a major problem. Luenberger observer theory 
generated strong interest among many researchers [1,2]. 
In recent years, many works are carried out in the filed 
of FDI [3-8], even though in many cases results are not 
practically validated on real model. 
Two aims of this article are:

• Transition closed loop system poles to intended 
position by suitable design of state feedback gain, 
using Eigenstructure Assignment (EA) method. It 

is obvious that in multivariable systems, for a set of 
given poles, state feedback gain matrix are
nonsingular and various ways may use to
determine it [9].

• A new parametric approach based on EA method, 
to calculate Luenberger observer gain matrix more 
expediently. The method provides a parametric
description of the observer gain and corresponding 
eigenvectors. Finally, fault diagnosis is carried out 
using residual signals. 

PROBLEM FORMULATION

Consider a linear system given as below:

n

r

m

X(t) AX(t) BU(t)
Y(t) CX(t)
X R

U R
Y R

 = +


=
 ∈
 ∈
 ∈



(1)

where, X, U and Y are state, input and output vectors, 
respectively and A, B and C matrices are coefficient 
matrices. Let’s suppose the system is controllable and 
observable.
So observer equation is as below:

n r m n m

ˆ ˆ ˆX(t) AX(t) BU(t) L(Y(t) Y(t))
ˆ ˆ ˆ ˆ ˆY(t) CX(t),X R , U R , Y R , L R ×

 = + + −


= ∈ ∈ ∈ ∈


(2)
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If error and residual signals are defined as:

ˆe(t) X(t) X(t)= −

and
ˆr(t) Y(t) Y(t) Ce(t)= − =

respectively, then derivative of error signal becomes: 

o
ˆe(t) X(t) X(t) (A LC)e(t) Ae( t )

r(t) Ce(t)

 = − = − =


=

 (3)

If L is determined suitably such that all the
eigenvalues of (A-LC) matrix is located in the left half 
plane, the error comes to zero.

By applying state feedback control rule as U = KX 
the Eq. 1 becomes:

c cX(t) AX(t), where A A BK= = + (4)

Suppose that eigenvalues of closed loop system 
and those of the observer are specified as:

C i(A ) {s C , i 1,2,...,n}σ = ∈ =

And
o oi(A ) {s C , i 1,2,...,n}σ = ∈ =

respectively. Where, si and soi values are complex
conjugate. So corresponding eigenvectors of the
eigenvalues can be written as:

c i i iA v s v , i 1,2, ,n= =  (5)

o oi oi oiA v s v , i 1,2, ,n= =  (6)

State Feedback Design Using EA Method
If Λ = diag (s1, s2,…,sn) and

[ ]1 2 nV v ,v , . . . v=

so Eq. 5 can be written as:

                             AV + BKV = ΛV (7)
Suppose:
                                    W = KV (8)

Then we will have 

                              AV+BW = ΛV (9)

Since the system is controllable, so

[ ]nrank( A sI B ) n for s C− = ∀ ∈

and nonsingular matrices P(s)∈Rn×n[s] and
Q(s)∈R(n+r)×(n+r)[s] can be achieved so that they satisfy 
conditions given as:

[ ] [ ]n nP(s) A sI BQ(s) 0 I , s C− = ∀ ∈ (10)

Now, if Q(s) matrix is determined as:

11 12

21 22

Q (s) Q (s)
Q(s)

Q (s) Q (s)
 

=  
 

where Q11(s)∈Rn×r[s], the first theorem can be achieved 
that is a parametric description of the feedback gain 
matrix.

Theorem 1: [10]
For Eq. 1, if rank (B) = r and complex conjugate 

values of si are determined for (s i, i = 1,2,…,n) and Eq. 
1 is controllable, it will be possible to represent a
parametric description of the feedback gain matrix, K, 
like below: 

                                      K = WV−1 (11)

[ ]1 2 n

i 11 i i

V v ,v , . . . v
v Q (s) f , i 1,2,...,n
 =


= =
(12)

[ ]1 2 n

i 21 i i

W w , w , . . . w
w Q (s )f , i 1,2,...,n
 =


= =
(13)

Where, fi ∈Cr, i = 1,2,…,n are a group of free
parametric   vectors   and  satisfy  the  following 
constraints:

i j i js s f f , i , j 1,2, ,n= ↔ = = 

det(V) 0≠

STATE OBSERVER DESIGN 
USING EA METHOD

For the system given by Eq. 1 and the observer 
given by Eq. 2, according to Eq. 3, to become the
estimation error to zero, magnitude of L should be
determined so that all the eigenvalues of (A-LC) matrix
locate in the left half plane. According to EA method, 
to get an appropriate L and desired roots, the following 
theorem is represented:
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Theorem 2: For Eq. 1 assuming rank(C) = m, complex 
conjugate values of soi for (soi, i = 1,2,…,n) determined 
and using EA method, a parametric description of gain 
observer matrix L similar to Eq. 3 will be achieved so 
that σ(A – LC) = (soi, i = 1,2,…,n) and

[ ]

[ ]

1 T
o o

o o1 o2 on

oi o11 oi oi

o o1 o 2 on

oi o21 oi oi

L ( W V )

V v , v ,...,v
v Q (s )f , i 1,2,...,n

W w , w ,...,w
w Q (s )f , i 1,2,...,n

− = −


=
 = =
 =
 = =

(14)

Where, foi∈Cr, i = 1,2,…,n are a group of free
parametric vectors and satisfy the following conditions: 

oi oi oi ois s f f , i,j 1,2, ,n= ↔ = = 

odet(V ) 0≠

Proof: By use of:

( ) ( )( ) { }T
oiA LC A LC s , i 1,2,...,nσ − = σ − = =

And transposed  Eq. 3,  magnitude  of L and
eigenvector  associated  with  eigenvalue  soi  shown  as 
νoi of (A – LC)Tare evaluated as:

( )
( )

T
oi oi oi

T T T
oi oi oi

A LC v s v

A C L v s v , i 1,2,...,n

− = ⇒

− = =
(15)

By   defining Λo =  diag  (soi), i = 1, 2,…, n   and 
Vo = [vo1, vo2,…,von] we have:

T T T
o o o oA V C L V V− = Λ (16)

If
                                  Wo = - LTVo (17)
Therefore

T T
o o o oA V C W V+ = Λ (18)

According to dual property, if couple (A, C) is 
observable, couple (AT,  CT) will be controllable and 
rank (AT – sIn CT) = n

Therefore, nonsingular matrices P(s)∈Rn×n[s] and
Qo(s)∈R(n+r)×(n+r)[s] can be obtained so such as they 
satisfy the conditions given as:

[ ]T T
o n o nP(s) A sI C Q (s) 0 I , s C − = ∀ ∈  (19)

If
o11 o12

0
o21 o22

Q (s) Q (s)
Q (s)

Q (s) Q (s)
 

=  
 

and
n r

o11Q (s) R [s]×∈

by using first theorem, we have:

[ ]

[ ]

o o1 o2 on

oi o11 i oi

o o1 o2 on

oi o21 i oi

V v , v ,...,v

v Q (s)f , i 1,2,...,n
W w , w ,...,w
w Q (s)f , i 1,2,...,n

 =


= =


=
 = =

(20)

Where foi ∈ Cr, i = 1, 2,…, n are a group of free 
parametric vectors and satisfy the following conditions: 

oi oi oi ois s f f , i , j 1,2, ,n= ↔ = = 

0det(V ) 0≠

Now, L can be obtained simply as:

T 1 T
o o o oW L V L ( W V )−= − ⇒ = − (21)

Defining residual signal as:

ˆr(t) Y(t) Y(t)= −

fault occurrence can be checked by the rule given by:

0 No Fault
r(t)

0 FaultOccure
=

= ≠
(22)

SIMULATION RESULTS

In this section to show the effectiveness of the EA 
method, the results are examined through longitudinal 
motion of unmanned aircraft model described by a
linear model as below: 

X AX BU
Y CX
 = +


=


(23)

0.062 0.2859 0 9.81 0 0.0125 0
0.562 2.3298 32.9799 0 0 0 5.3170
0.070 .4526 0.0499 0 0 0 13.5789

A 0 0 1 0 0 0 0
0 1 0 33 0 0 0

16.85 0 0 0 0 1.1968 0
0 0 0 0 0 0 10

− − 
 − − 
 − − − −
 

=  
 −
 
− − 
 − 
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Table 1: calculate and compare closed loop and observer roots with EA method 

Desired roots -2.8±5j -1 ± j -0.1 -3 -20

σ (A + BK) Roots according to the First theorem -2.8007±5.0072j -0.9459±0.9968j -0.1001 -2.9919 -20.9
σ (A - LC) Roots according to the Second theorem -2.8002±5j -1±j -0.1000 -2.9997 -20.0
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(25)

So the desired eigenvalues of closed loop system is 
used as follow.

1,2

3,4

5

6

7

2.8 5j

1 j
0.1

3
20

λ = − ±

λ = − ±
 λ = −
λ = −
λ = −

(26)

Using the first and the second theorems and
considering desired roots for closed loop system and 
observer, Table 1 is obtained. 

Now  in  trim  conditions and a pitch rate variation 
of 1 rad/sec simulations are carried out. Closed loop 
outputs obtained by applying the state feedback are the 
state observer outputs too and they are shown in Fig. 1 
and 2. State variables converge to the steady state 
values and the estimated state variables follow the real 
ones by suitable speeds. Then, to confirm efficiency of
this method for identifying and detecting the faults, 
simulation are repeated by increasing the amplitude
[Height] of the second output by 0.2 step function at 
time 15 second. Residual signals are illustrated in Fig. 3 
and 4. Figure 3 indicates the difference between real 
and estimated values of pitch rate and Fig. 4 shows the 
same  difference for height. The fault which is occurred 
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Fig. 1: Real and estimated pitch rate
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Fig. 2: Real and estimated height
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Fig. 3: The difference between real and estimated
values of pitch rate, when fault applied to the 
height sensor at 15th second

at time 15 second can be observed in Fig. 4 obviously. 
However, Fig. 3 doesn't illustrate the fault occurrence 
clearly. Moreover, by  use of residual signal, the type of 
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Fig. 4: The difference between real and estimated
values of height, when fault applied to the
height sensor at 15th second

the fault can be determined and this presents another 
significant advantage of the proposed method. 

CONCLUSION

In this paper, state observer design problem is 
taken into account by means of EA method. A
parametric description for observer gain matrix is
presented and eigenvalues of observer and
corresponding eigenvectors are obtained. Having a
series of parametric vectors and appropriate poles
provide possibilities to specify other characteristics 
such as robustness of system. Longitudinal motion of 
unmanned aircraft model accompanied with EA based 
state feedback controller is utilized as an example to 
illustrate effectiveness of the observer design method. 
Simulation results confirm capability of the proposed 
observer design methodology.
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