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Abstract: The estimation of cancer risk in individuals is of great interest for research teams. The kin-cohort
method is a method of choice for estimating hazards and penetrance of cancer, because of its capability to 
illustrate the correlation between genotype and phenotype. In the estimation of cancer penetrance, many 
models omit to take into account the fact that hazards are likely to increase, decrease, or remain constant 
with respect to age variations. In order to estimate cancer penetrance by rectifying the said drawback of the 
commonly used models , we utilized a modified piecewise exponential model using weibull distribution, i.e. 
a piecewise Weibull model. We considered mutations in BRCA1 and BRCA2 genes, which are related to 
ovarian and breast cancer. A set of data similar to true values was generated. We analyzed the data set 
using both piecewise exponential and piecewise Weibull models. Our results showed that the Weibull 
model was closer than the exponential model to the true values in terms of estimating the hazards and 
penetrance and a significant difference between two models was recognized. For the persons who are at 
risk of developing cancer, Due to the importance of the estimation of incidence probability, methods that 
can generate most accurate estimations are preferable. Therefore, we recommend the piecewise Weibull 
model as a proper model for the estimation of hazard and penetrance.
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INTRODUCTION

Cancer is fundamentally a genetic disease and is 
partially due to gene mutation. Many types of cancer 
have a higher incidence in the relatives of patients than 
in the general population and some of them exhibit the 
Mendelian inheritance [1]. For many diseases like
cancer, age is one of the primary risk factors. The risk 
of developing cancer increases with age; nonetheless, 
not everyone experiences the disease in his or her
lifetime [2]. The risk of cancer increases up to threefold 
if one first-degree relative and up to tenfold if more 
than one first-degree relative is affected [1]. These 
familial risks tend to increase even further if the onset 
of disease in the affected first-degree relative is at age 
40 or younger [1].

The two genes of BRCA1 and BRCA2 are the most 
important predisposing genes in the causation of breast 
or ovarian cancer [1, 3-8]. Individuals who carry the 
mutation in BRCA1 are at increased risk of developing 
breast or ovarian cancer [3]. Detection of cancer cases 
and/or estimation of incidence probabilities in persons 
at risk in different age groups are of great importance
for the medical community [1]. 

There are several methods such as cohort designs 
for estimating the risk of cancer in those at risk.
However, penetrance estimation in a cancer gene, like 
BRCA1 or BRCA2, via such common methods as
cohort and case-control designs is hardly feasible.
Studying families with ovarian or breast cancer in order 
to estimate the risk of cancer yields unreal results with 
respect to penetrance. 

The Kin-cohort approach, a method for estimating 
penetrance, uses probands and their relatives to study 
the effects of mutations in such genes as BRCA1 and
BRCA2 on cancer risk. In the kin-cohort method, the 
probands are genotyped in the first step. The set of all 
the carrier’s relatives is called carrier kin and the set of 
all the non-carrier’s relatives is called non-carrier kin. 
The phenotypes of all these relatives are, thereafter, 
determined  and  data  on  disease history among 
relatives  are  collected  so  that  cancer  penetrance  can 
be estimated [2, 9-15].

The ability to study multiple phenotypes
simultaneously is an advantage of this design [12]. This
design was employed by Wacholder et al. [9] to 
estimate the cumulative probability of developing
breast   or ovarian   cancer,   as   a  function of age, for 
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carriers of mutations of BRCA1 or BRCA2 in
Ashkenazi Jews from the region surrounding
Washington, DC. In this study, penetrance for
mutations in BRCA1/2 genes for the first occurrence of 
breast or ovary cancer in 70-year-old women was 
estimated at 63%.

A common assumption for all the existing methods 
for the kin-cohort estimation is that the censoring 
mechanism does not depend on the mutation under 
study [2, 9-11]. When the events have the censoring 
mode, the competing risk model provides the better 
method for analyzing data. In this model, the estimation 
of cancer penetrance is in terms of ‘cause-specific
hazard’ functions. A likelihood-based estimation with 
piecewise exponential modeling of cause-specific
hazard functions has been proposed to estimate these 
hazards [15].

The Weibull distribution is the generalized form of 
exponential distribution and is commonly used as a 
lifetime distribution (most useful model for lifetime
distribution). Given that hazards are likely to increase, 
decrease, or remain constant with respect to age
variations, the piecewise Exponential model in this
situation can not be accepted as a proper solution. In 
this study, we used a modified piecewise exponential 
model, i.e. a piecewise Weibull model. 

MATERIALS AND METHODS

Competing risk: A common assumption for all of the 
existing methods for the kin-cohort estimation is
supposed that the censoring is independent of genotype 
[9-11, 16]. However, the onset of any of the known 
BRCA1/2-related cancers can be treated as a censoring 
event. Therefore in the estimation of the risk of ovarian 
cancer, for example, subjects may be censored because 
of a death that came from breast cancer it could occur 
before diagnosing of ovarian cancer. 

Let y denote the indicator of whether the subject is 
a carrier. The cumulative risk (penetrance) of a disease 
up to age t associated with genotype Y = y can be 
showed by Fy (t). The estimates of  F0 (t) and F1 (t) are 
needed [2, 9-12, 15]. In the presence of two competing 
events (for example), E1 and E2, T1 and T2 are the time 
to these events. The follow-up for the second event 
ends  at  the  onset  of the first event. It is showed that 
the cause-specific hazard function for the ith event at 
time t for an individual with genotype Y = y, the
instantaneous probability that an individual with
genotype Y = y will  experience  the  event  Ei at  time 
t,  given  that  s/he  has  been  “at risk”, can be 
computed as [15]
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Both hi0 (t) and hi1 (t) are hazards for non-carriers
and carriers respectively that are defined in defined 
intervals by:
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It is showed that piecewise exponential model can be 
used for the estimation of cause specific hazard values. 
In this method composite likelihood with regard to the 
likelihood contribution of family history data of the 
relatives of a volunteer is used as the product of the 
probabilities of the phenotype history of the individual 
relatives, given the genotype of the volunteers as below.

Composite likelihood: Let m be the number of
probands and Y0i the genotype of the ith proband. If the 
ith volunteer reports the family history of a phenotype γ
for ni relatives and γij the value of γ for the jth relative of 
the ith proband therefore the composite-likelihood of the 
family history data of the relatives can be showed by
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Which in this equation Pr (γij|Y0i) defined the
marginal probability density of the phenotype history of 
the jth relative of the ith proband, given the genotype of 
the ith proband and on the right-hand side, this
probability is computed as the weighted sum of the 
probability density of the phenotype history of the
relative if the relative was a noncarrier or a carrier, with 
weights defined by the corresponding probabilities of 
the relative being a noncarrier and a carrier given the 
genotype of the volunteer. 

With regard to “competing risks” definition, we 
need to define the triplet observations by γ = (t, δ1, δ2),
which T denote the time to the first of the two events, 
or censoring if neither of the events occurred during 
follow-up. δ1, δ2 are the indicator variables of occurring 
of two competing events, E1 and E2. It is obvious that 
both of them cannot occur simultaneously.

Given that hazards are likely to increase, decrease, 
or remain constant with respect to age variations, the 
piecewise exponential model in this situation may not 
be regarded as a proper solution. Therefore as Weibull 
distribution is the generalized form of exponential
distribution and is commonly used as a lifetime
distribution, with respect to Weibull distribution the 
composite-likelihood of the event history data of
relatives  can be computed by replacing Pr (γij|Yij = y) in 
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Equation (1) with the corresponding likelihood for competing risk data, given by 

1ij 2ij1 11y 1y 2y
2y 1y 2y

1y 1y ij 2y 2y ij 1y ij 2y ijT . T . exp ( T ) . exp ( T )
β β − β −δ δ

β β β       β λ β λ − λ − λ             

Maximization of the composite-likelihood:  With using of EM (Expectation-Maximization) algorithm for
maximization of the composite-likelihood with respect to the hazard parameters we have the following steps for 
each iteration. In the E-step of the algorithm we compute the conditional probability of each relative being a carrier 
and a noncarrier, given their individual event history and the genotype of the index proband. In this state W0ij and 
W1ij denoted the corresponding probabilities of being a noncarrier and a carrier, respectively, for the jth relative of 
the ith proband. We improved the weighted values W0ij and W1ij by participating the weibull model to computing 
theme’s and hazards, 

{ } ( )
1ij 2ij1 11y 1y 2y

2y 1y 2y

1ij 2ij1 11y 1y 2y
2y 1y

1y 1y ij 2y 2 y ij 1y ij 2 y ij r ij 0i

yij

1y 1y ij 2y 2y ij 1y ij 2

T . T . exp ( T ) ( T ) . P Y y | Y
W

T . T . exp ( T ) (

β β − β −

β β − β −′ ′ ′
′ ′

δ δ
β β β

δ δ
β β

′ ′ ′ ′ ′ ′

     β λ β λ − λ + λ =         =
   β λ β λ − λ + λ       { } ( )2y

1

y ij r ij 0i
y 0

T ) . P Y y | Y′β

′=

  ′=  ∑

In the M-step of the algorithm, hazard values can be 
obtained by
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ijkN denotes the indicator of whether or 

not the relative has an event of type l in that interval.
Iterating  takes  place  between the E-step and the 

M-step of the algorithm until convergence yields the 
final  estimates  of  hazard values. With regard to 
weibull hazard function, h (t) = βλβtβ-1 and its
logarithm, ln h(t) = ln (βλβ) + (β-1) ln t, it is obvious 
that  depend  on  a  regression relation, we can estimate 

and  parameters.

Steps of EM algorithm: We carry out these processes 
for the piecewise Weibull model in each step of EM 
algorithm:

• Finding the primary estimates of h (t) and S (t) 
(Survival)

• Estimating the Weibull distribution parameters
with bootstrap sampling of primary simulated data

• Revising h (t) and S (t) values
• Revising weighted values W0ij and W1ij

• Computing h (t) and S (t) values
• Iterating between steps 3 and 5 until convergence 

to good solution

Simulation: Because of mutations in BRCA1/2 which 
are related to Ovarian or Breast cancer, we used the 
simulation experiments to evaluate the performance of 
the proposed piecewise Weibull model for the
estimation of the default hazard and the penetrance 
functions of ovarian cancer (i.e.: in the absence of
breast cancer). Thus, the onset of breast cancer treated 
as censoring events for ovarian cancer. We generated 
data in a setting similar to the true values (following 
setting). We used an allele frequency of 0.0112 to 
generate the mutation status for 10,000 probands. For 
describing ovarian cancer risk, we chose the
corresponding shape and the scale parameters to be 
0.0051 and 4.0051, respectively, for the non-carriers
and 0.0081 and 2.9837, respectively, for the carriers. 
We assumed that relatives can be censored either at 
their death from other causes, or at the time of the 
interview of the proband. For the relatives of carriers 
and noncarriers, we generated their age at mortality 
from a normal distribution that had a mean age of 81 
and standard deviation of 10. We repeated these steps 
50 times [15].

We analyzed each data set, using both the
piecewise exponential and Weibull models. Graphs of 
the hazard and the cumulative incidence functions were 
plotted to compare the visual differences of the two 
models.

AIC  (Akaike's  Information  Criterion)  was used 
for  a comparison  of  the  two  methods. In  this  step, 
by  computing  the  AIC  in  both  piecewise
exponential and Weibull models and differences of
these AIC, we have 

∆ = AICExponential - AICWeibull
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Fig. 1: Estimates and default values of age-specific hazard function of ovarian cancer in the absence of breast 
cancer in carriers
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Fig. 2: Estimates and default values of cumulative risk (penetrance) of ovarian cancer in the absence of breast 
cancer in carriers

Table 1: Confidence intervals of age-specific hazard functions of 
ovarian cancer in the absence of breast cancer in
BRCA1/BRCA2 gene carriers in both piecewise models on 
the basis of different age groups

95% Confidence Intervals
Age -----------------------------------------------------------------------
group Piecewise exponential model Piecewise Weibull model

< 30 0.00069-0.00075 0.00025-0.00040
30-35 0.00279-0.00313 0.00092-0.00157
35-40 0.00382-0.00423 0.00117-0.00202
40-45 0.00512-0.00570 0.00149-0.00266
45-50 0.00684-0.00748 0.00183-0.00338
50-55 0.00836-0.00912 0.00220-0.00437
55-60 0.01006-0.01107 0.00244-0.00514
60-65 0.01202-0.01331 0.00261-0.00572
65-70 0.01536-0.01696 0.00309-0.00704
70-75 0.01812-0.01975 0.00341-0.00827
75-80 0.02208-0.02431 0.00445-0.01145
80-85 0.02559-0.02821 0.00503-0.01390
85-90 0.03101-0.03479 0.00744-0.02195

The ∆ is easy to interpret and allow a quick
strength of evidence comparison and ranking of
candidate models. If ∆≤2, there is strong evidence of 
the equality of the two models. 4≤∆≤7 has a
considerably less support and models having ∆>10 have 
essentially no support. The model with less AIC is 
suitable [17]. 

Because of discontinuity of hazard functions in 
these models, Plots for hazard estimates are obtained
after smoothing original estimates, using a moving
average method of length 10-year

RESULTS

Results from  simulated  experiments  show  the 
bias in estimation of age-specific hazard (Fig. 1 and 3) 
and penetrance (Fig. 2 and 4) of ovarian cancer (in the 
absence of breast cancer). Solid curves show
hazard/penetrance functions corresponding to default 
underlying   Weibull   distribution.   Dashed   lines 
show mean of estimates over 50 simulated data via 
piecewise  exponential  model  and  Dotted  lines  show 
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Table 2: AIC results in piecewise exponential and Weibull models

AIC
------------------------------------------- 
Piecewise Piecewise ∆ = AICExponential

exponential model Weibull model - AICWeibull

Non-carriers 13075 12764 311
Carriers 16880 14127 2753

corresponding mean estimates of ovarian cancer, using 
method developed in this study.

Our results showed that the estimate of age-specific
hazard values and cumulative risk (penetrance) of
ovarian cancer in the absence of breast cancer in the
carriers in all age groups was closer to the default 
values in the piecewise Weibull model by comparison 
with the piecewise exponential model (Fig. 1 and 2).

For penetrance estimation shown in Fig. 2, the bias 
seems to be more important, not as much as piecewise
exponential model, for older ages than younger in
carrier group by proposed method. 

Computing the 95% confidence intervals showed 
that in almost all age groups, there was no overlap of 
age-specific hazards between the two models (Table 1).

As was mentioned previously in Methods, given 
∆>10 and computed differences of AIC in both groups 
of carriers and non-carriers in the two surveyed models, 
there was evidence of difference in the estimates
yielded by the two models (Table 2).

CONCLUSSION AND SUGGESTIONS

Detection of persons susceptible to cancer and 
estimation of incidence probabilities for different age 
groups are of utmost importance [1]. Several methods 
for the estimation of incidence probabilities have been 
developed over the years. The cohort design is one such 
estimation method with the ability to study the etiology 
of multiple diseases. In the kin-cohort analysis,
estimation and interpretation of parameters while
studying the effect of a gene depend on proper
accounting for any other competing events that may be 
strongly influenced by the same gene [15]. 

Given that hazards are likely to increase, decrease, 
or remain constant with respect to age variations and 
that age is one of the primary causes of cancer
incidence, it is not advisable to assume that cause-
specific hazards at any given time interval remain
constant. Therefore, a hazard model based on the
Weibull distribution, which covers these variations, can 
be of great interest.

In this article, we analyzed the piecewise Weibull 
model against the piecewise exponential model. We
used  simulated  data  for  the  purpose. In our study, the 

results from simulated data showed that we can expect 
better results when the hazard model is based on the 
Weibull distribution. Our results demo nstrated that the 
estimated cause-specific hazard functions and
cumulative risks (penetrance) of ovarian cancer in the 
absence of breast cancer in the two groups of carriers 
and non-carriers via the piecewise Weibull model were 
closer than piecewise exponential model to the default 
theoretical distribution. 

For comparing the recommended model
(piecewise weibull) with piecewise exponential
model,We have used the AIC. The marked differences 
of AICs (311 for Non-carriers and 2753 for Carriers) 
showed significant differences between two methods 
and bear out the superiority of the piecewise Weibull 
model

Because of importance of estimation of the cancer 
risk in individuals, the methods which can generate 
most accurate estimations are preferable. Therefore, we
recommend the piecewise Weibull model as a proper 
model for the estimation of hazard and penetrance in 
case of competing event.
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