
World Applied Sciences Journal 6 (1): 70-76, 2009
ISSN 1818-4952
© IDOSI Publications, 2009

Corresponding Author: Dr. M.R. Soltanpour, Shahrood University of Technology, P. Code: 3619995161, P.O. Box 316, 
Shahrood, Iran

70

Sliding Mode Robust Control of Robot Manipulator in the Task Space by Support of
Feedback Linearization and BackStepping Control

M.R. Soltanpour and M.M. Fateh

Shahrood University of Technology, P. Code: 3619995161, P.O. Box 316, Shahrood, Iran

Abstract: A robust control approach is developed to control robot in the task space using sliding mode by 
support of feedback linearization control and backstepping method, in this study. The bounds of
uncertainties applied in the sliding mode control are reduced by applying feedback linearization. This 
provides a robust control system with a less error. The back-stepping method is used to define a linear slip 
surface and providing uniform ultimate boundedness stability purpose. A case of study is carried out on a 
two link elbow robot driven by electrical motors. 
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INTRODUCTION

Industrial robots are commonly controlled in joint 
space to perform position control [1]. In practice, for 
tracking a trajectory in task space, an industrial robot 
follow a desired trajectory in joint space which is
already recorded in a learning process called the teach 
and play back technique. Actually, the transformation
from task space to joint space is realized perfectly by 
this technique while a computed transformation such as 
inverse kinematics may involve model uncertainties.
This technique works well if the transformation to be 
repeatable. Thus, it is not surpris ing if a joint space 
control can provide a desired tracking performance in 
task space without feedbacks from the end-effector
position since an industrial robot is constructed in a 
high quality with a good repeatability, precision and 
resolution to overcome uncertainties.

In joint space control, feedbacks from joint space 
are given to control system for tracking a desired 
trajectory. This control system does not detect the
position error of end-effector in work space. Even if a 
precise tracking of joint positions is achieved, a desired 
tracking in task space is not provided by the use of 
imperfect transformation of control space. Thus, due to 
detecting tracking error of the end-effector, task-space
tracking control of a normal-cost robot is superior to 
joint space control. It means that we can expend less 
cost to achieve a desired performance by a task-space
control of a normal-cost robot in replace of joint-space
control an expensive robot. However, obtaining
feedbacks  from  task-space is not as convenient as 

joint-space. The joint positions are measured suitably 
by optical encoders while end-effector position may be 
detected using vision systems [2, 3]. 

There is a challenge in robot control to overcome 
uncertainties, nonlinearities and couplings from
different aspects in the field of robust control as
surveyed in [4-7]. The robust control provides stability 
under uncertainties with a trade off between tracking 
performance and bounds of uncertainties. This control 
approach was extensively presented in joint space while 
controlling a robot in task space is still a control
problem. Recently, several regulating controllers were 
proposed for task space to overcome parametric
uncertainties [8]. The approximate Jacobian controllers 
were proposed with task-space damping for the set-
point control of robot with uncertain kinematics and 
dynamics [9]. And, an adaptive Jacobian controller was 
proposed for trajectory tracking control of robot
manipulators in task-space under parametric
uncertainties [10]. The controller does not require exact 
knowledge of Jacobian matrix and dynamic parameters. 
Moreover, an adaptive task-space tracking control
method was proposed using visual task-space
information to overcome the parametric uncertainties in 
model including actuators [3]. Thus, adaptive control of 
robot in task-space is successful to overcome
parametric uncertainties, however unstructured
uncertainties are remained to consider. 

The robust control approaches can present the
uniform bounded error convergence in the case of wide 
range of uncertainties. This is a result of uniform
ultimate   boundedness  (u.u.b.)  of   the   tracking  error 
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using the Lyapunov based theory of guaranteed stability 
of uncertain system [11, 12]. The u.u.b. of the tracking 
error will not result in a perfect tracking performance 
such as asymptotic stability. Chattering is a side effect 
of using the switching control laws which degrades the 
performance of control system by exciting un-modeled
dynamics. In practice, a chattering control signal results
due to non-zero switching delays for providing
solutions to the closed loop differential equations on 
tracking error [13]. The Lyapunov based theory of
guaranteed stability of uncertain system is then used for 
avoiding chattering and thus, providing a continuous
control law. This yields u.u.b. of the tracking error.

Problem formulation: The dynamics of the robot with 
n degree of freedom can be expressed as [13]. 

( ) ( ) ( )M q q H q,q u t+ =  (1)

Where, q(t)∈Rn denotes the joint angles of the
manipulator, q(t)  and q(t)  are the vectors of joint 
velocity and joint acceleration, respectively. M(q)∈Rn×n

is the inertia matrix which is symmetric and positive 
definite, nH(q,q)q R∈   is a vector function containing 
coriolis and centrifugal forces, gravitational forces,
viscous and static frictions, disturbances and un-model
dynamics.  u(t)∈Rn  is  the  vector  function containing 
of  applied  generalized  torques. A control law is 
defined as:

( ) ( ) ( )ˆ ˆM q v H q,q u t+ = (2)

According to uncertainties, M̂(q)  and Ĥ(q,q)  are 
estimated of M(q) and H(q,q) , respectively. ν is
expressed to the following form

( )1
dv J (q) w w X−= + ∆ +  (3)

Where, J−1(q) is inverse Jacobian matrix, w and ∆w are 
new control law and Xd is desired path in the task 
space. Assuming there are no singular points in the 
desired path in task space such that the Jacobian matrix 
is of full rank. According to (1), (2) and (3) we have

( ) ( ) ( ) ( )1

d

w wˆ ˆM q q H q,q M q J (q) H q,q
X

− + ∆ 
+ = + 

+ 
   (4)

(4) is simplified as:

( ) ( ) ( ) ( )
( )

1 1 1

d

ˆw w H q,qˆq M q M q J (q) M q
X H q,q

− − −
 + ∆ 
 = +   + −   


  

(5)

By defining Ĥ(q,q) H(q,q) H(q,q)− = ∆   , we have

( ) ( ) ( ) ( )1 1 1

d

w wˆq M q M q J (q) M q H q,q
X

− − −+ ∆ 
= + ∆ 

+ 
  (6)

1
dJ (q)(w w X )− + ∆ +   is added and subtracted to (6) 

and it rearranged as:

( ) ( ) ( )( )
( ) ( ) ( )

1 1 1
d

1
d

ˆq J (q) w w X M q M q I J

(q) w w X M q H q,q

− − −

−

= + ∆ + + −

+ ∆ + + ∆



 
(7)

Control law w is expressed as:

w J(q)q= −   (8)

Where, J(q)  is derivative of Jacobian matrix. J(q)

exists if the desired path is smooth. By substituting (8) 
into (7), we have

( )
( ) ( )( ) ( )
( ) ( )

1
d

1 1
d

1

q J (q) J(q)q w X

ˆM q M q I J (q) J(q)q w X

M q H q,q

−

− −

−

= − + ∆ +

+ − − + ∆ +

+ ∆

  

 



(9)

The task space velocity X(t)  is related to joint 
space velocity q(t)  as [9, 10]:

( )X J q q=  (10)

Where, J(q)∈Rn×n is the Jacobian matrix from joint 
space to task space. The derivative of Eq (10) respect to 
time can be written as:

( ) ( )X J q q J q q= +   (11)

Tracking    error    in   task   space  is  defined  as
X-Xd = e(t) and by using of (11), (9) is simplified as:

( )
( ) ( )( ) ( )
( ) ( )

1 1
d

1

e t w

ˆJ(q) M q M q I J (q) J(q)q w X

J(q)M q H q,q

− −

−

= ∆

+ − − + ∆ +

+ ∆



 



(12)

In order that we simplify (12), following equations 
is defined

( ) ( )( )1 1ˆE J(q) M q M q I J (q)− −= − (13)
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( ) ( ) ( )1
dE J(q)q w X J(q)M q H q,q−η = − + ∆ + + ∆   (14)

(13) and (14) are substituted into (12) 

( )e t w= ∆ + η (15)

By defining of e(t) = X1(t) and 2e(t) X (t)= , we have

( ) ( )
( )

1 2

2

X t X t
X t w
 =
 = ∆ + η


 (16)

Backstepping method: The form of Eq. (16) is shown 
that the backstepping method can be used for control of 
closed loop system (16) [14]. Therefore, X2(t) is
selected as input and we should design it until X1(t)
converges to zero. Therefore, X2(t) is expressed as:

( ) ( )2 1X t X t , 0=−µ ∀µ  (17)

To prove the stability of closed loop system (16), 
the Lyapunov function candidate is presented as:

( ) ( ) ( )T
1 1 1

1
V X X t X t

2
= (18)

The derivative of Eq (18) respect to time can be 
written as:

( ) ( ) ( )T
1 1 1V X X t X t=  (19)

According to (16) and (17), we have

( ) ( ) ( )T
1 1 1V X X t X t 0=−µ ≤ (20)

(20) is shown that the error in task space converges to 
zero.

Sliding surface: To establish (17), we select sliding 
surfaces Z to the following form

( ) ( )2 1Z X t X t= + µ (21)

The derivative of Eq (21) respect to time can be 
written as:

( ) ( )2 1Z X t X t= + µ   (22)

(16) is substituted into (22) as 

( )2Z w X t= ∆ + η + µ (23)

Control law ∆w is defined to the following form

( )2w X t∆ = γ − µ (24)

Where, γ is new robust control. γ is proposed for 
compensation of uncertainties. (24) is substituted into 
(23), we have

Z = γ + η (25)

Robust  control:  (14)  is  containing  of  structured
and unstructured uncertainties therefore (14) is
expressed as:

( ) ( )
2 d

1

EJ(q)q E E X EX

J(q)M q H q,q−

η = − + γ − µ +

+ ∆

 


(26)

For design of robust controller, the following
assumptions should be established

Assumptions

• dX Q≤ 〈∞

• ( )1 2X , X E , 0 E 1∞ ∞η ≤ρ + γ ≤ 〈α〈

• ( ) ( )1 2H q,q Q X ,X∆ ≤

• ( ) ( )1 2 1 2 1 2X , X X , X b , X , X , b 0β ≥ ρ + ∀ 〉

Where, Q is positive constant, ρ (X1, X2) and Q 
(X1,  X2) are positive definite functions. According to 
above assumptions, we should design robust control 
until Z converges to zero. For this purpose, (25) are 
selected in aspect of n scaler equation as:

i i iZ = γ + η (27)

The Lyapunov function candidate is presented as:

( ) 2
i i i

1
V Z Z

2
= (28)

The derivative of Eq (28) respect to time can be 
written as:

( )i i i i i i i iV Z Z Z Z Z= = γ + η  (29)

According to (29) and above assumptions, we have

( ) ( )( )i i i i i 1 2V Z Z Z X , X E ∞≤ γ + ρ + γ (30)
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According to above assumptions, we select robust
control to the following form

( ) ( )1 2
i i

X , X
sgn Z

1 E
β

γ = −
−

(31)

In (31), sgn(o) is sign function. According
to i i iZ sgn(Z) Z= , we have 

( ) ( ) ( )

( )

1 2
i i i 1 2 i

1 2
i

X ,X
V Z Z X , X Z

1 E
X ,X

E Z
1 E

β
≤ − +ρ

−
β

+
−


(32)

( ) ( ) ( ) ( )1 2 1 2
i i i 1 2 i

X , X X , X
V Z E Z X , X Z

1 E 1 E
β β 

≤ − + + ρ 
− − 

 (33)

( ) ( ) ( )i i 1 2 i 1 2 iV Z X ,X Z X , X Z≤−β + ρ (34)

According to (34) and above assumptions, we have

( )i i iV Z b Z≤ − (35)

According to (35), Zi converges to zero therefore 
(18) is established thus X1(t) and X2(t) converge to zero 
therefore the closed loop system is global asymptotical 
stable. According to (2), (3), (8), (24) and (31),
proposed control is the following form 

( ) ( )
( ) ( )

( )

1 2
1

2 d

X , X
J(q)q sgn Zˆu t M q J (q) 1 E

X X

Ĥ q,q

−
 β
− − = − 
 −µ + 

+

 





(36)

MODIFIED CONTROL LAW

In order that presence of sign function in proposed 
control, input control is discontinue therefore we have a 
chattering. For prevention of this phenomenam, we use 
saturation function instead of sign function in proposed 
control.

Using of saturation function instead of sign function: 
We use saturation function instead of sign function in 
proposed control thus

( )1 2 i
i

X , X Zsat
1 E

β  γ = −  − ε 
(37)

The derivative of The Lyapunov function candidate 
respect to time can be written as:

( ) ( ) ( )

( )

1 2 i
i i i 1 2 i

1 2
i

X , X z
V Z Zsat X , X Z

1 E
X , X

E Z
1 E

β  ≤ − + ρ − ε 
β

+
−


(38)

For |Zi|≥ε  we have

iZsat 1  = ε 
(39)

Therefore we have

( ) ( ) ( )

( )

1 2
i i i 1 2 i

1 2
i

X , X
V Z Z X , X Z

1 E
X , X

E Z
1 E

β
≤ − + ρ

−
β

+
−


(40)

(40) is simplified and according to above
assumptions, we have

( )i i iV Z b Z≤ − (41)

According to (41), |Zi| is reduce and it reaches to 
|Zi|≤ε and remains in it. Therefore set of {|Zi|≤ε, 1≤i≤n}
is boundary layer. Though error is not zero but it can 
not increase of boundary layer. Thus the closed loop 
system is  uniform ultimate boundedness stable.
modified control schema is shown in Fig. 1.

Establish of → (X1,  X2): According to (26) and above 
assumptions, we have

( ) ( )
2

1
1 2

J ( q ) q X

Q J(q)M q Q X , X−

η ≤ α + α γ + µ α

+ α +

 
(42)

Where, J(q) is maximum derivative of Jacobian matrix, 
J(q)  is maximum of Jacobian matrix and 1M (q)−  is 
maximum inverse of inertia matrix. We define
following equation

( ) ( )
( ) ( )

1 2 1 2 2
1

1 2

X , X J ( q ) q X , X X

Q J(q)M q Q X ,X−

ρ = α +αρ + µ α

+ α +

 
(43)

According to (42) and (43), we have

( )1 2X , Xη ≤ ρ (44)

(43) is simplified as:

( ) ( )
( ) ( )

21
1 2 1

1 2

J(q) q X Q
X , X I

J(q)M q Q X ,X

−
−

 α +µα + α ρ = − α  
+  

 
(45)
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Fig. 1: Nonlinear robust control in task space

CASE STUDY OF TWO LINK ELBOW 
ROBOT MANIPULATOR

In order to verify the performance of proposed 
control scheme, as an illustration, we will apply the 
above presented controller to a two-link elbow robot 
manipulator driven by permanent dc motors as shown 
in Fig. 2. The dynamic of the two-link elbow robot 
manipulator can be described in the following
differential equation [13]: 

( )
( )

( )
( )

11 12 1 1 1

21 22 2 2 2

M M q h q,q V t
M M q h q,q V t

      
+ =      

       

 
 

(46)

( )2 2 m
11 2 2 1 2 2 1 1 2 2

m

J rRM l m 2 l l cos q l (m m )
Kr

 = + + + +  
(47)

( )( )2
12 21 2 2 1 2 2 1

m

rR
M M l m l l m cos q

K
= = + (48)

2 m
22 2 2 2

m

J rRM l m
Kr

 = +  
(49)

( )

( )
( )

( )

( ) ( )

2
2 1 2 2 2

2 1 2 2 1 2
1

m1 2 2 1 22

1 2 1 1

m l l sin q q

2m l l sin q q q
rRh q,q B Kq m l gcos q q

r
m m lgcos q

 −
 
 −
 =  
+ + + 

 
 + + 


 




(50)

( )
( )( )

( )

2 2 1 2
m

2
2

2 1 2 2 1 22
m

rR
m l g cos q q

K
h q,q

B rR
m l l sin q q q

Kr

 + 
 =  

  + +    


 

(51)

Where qi for i = 1, 2  denotes the joint angle, li is the
link  length,  mi  is  the  link  mass, 

imJ is the sum of the 

Fig. 2: Two link elbow robot manipulator

actuator and gear inertias, ri is gear ratio, B is the 
coefficient of motor friction and includes friction in the 
brushes and gears, 

imK is the torque constant, Ri is 
armature resistance and V(t) is armature voltage.
The Jacobian matrix is in the form of

1 1 2 1 2 2 1 2

1 1 2 1 2 2 1 2

l sin(q ) l sin(q q ) l sin(q q )
J(q)

l cos(q) l cos(q q ) l cos(q q )
− − + − + 

=  + + + 
(52)

The kinematic equation is given by 

1 1 2 1 2

1 1 2 1 2

l cos(q ) l cos(q q )
X

l sin(q ) l sin(q q )
+ + 

=  + + 
(53)

The link's parameters are estimated by a gain of 
from real values given in Table 1. Desired path in task 
space and initial condition are shown in Fig. 3 and 4. 
We set the controller with µ = 10. Then, from bounding 
parameters ξc, ξg, ξt, 0fξ and

1fξ , we choose bounding 

function β (X1, X2) to be:
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Table 1: Parameters of two link elbow robot
l1 = 1 l2 = 1
m1 = 10 m2 = 5
R = 1 R = 1
Km = 0.0001 Km = 0.01
B = 0.02 g = 9.8
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Fig. 3: Desired path
1dX  in task space 
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Fig. 4: Desired path
2dX  in task space

( ) ( )2
1 2 1 2X , X 250 55 X Xβ = + + (54)

We apply proposed control to two link elbow robot 
manipulator. According to Fig. 5 and 6, the proposed 
control performs appropriately and maximum trajectory 
errors Xd1 and Xd2 are 1.6×10−6 and 0.9×10−5,
respectively. The control inputs are continous and under 
the permitted values as shown in Fig. 7 and 8.

CONCLUSION

A novel approach was developed for trajectory 
tracking        control     of     electrically-driven   robotic 
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Fig. 5: Tracking error 
1dX  in task space 
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Fig. 6: Tracking error 
2dX  in task space 
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Fig. 7: Input control to the first motor 

manipulators in task space. The simulation results
confirmed that the proposed control law can provide a 
desired tracking performance for a robotic manipulator 
with uncertain dynamics and uncertainties in actuator 
models. In proposed control, we use feedback
linearization technique for reduce of known nonlinear 
terms. For compensation of remained terms, a sliding 
mode control is proposed by using of backstepping 
method.   Analytical  mathematic  are   shown   that  the
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Fig. 8: Input control to the second motor

closed loop system is global asymptotical stable. For 
remove of chattering control, we modify proposed
control. By modified control, the closed loop system is 
uniform ultimate boundedness stable. The simulation 
results illustrate that the designed controller performs 
well in presence of uncertainties and the tracking errors 
converge to zero rapidly.
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