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Abstract: In recent years, xylanase has become an essential option for environmental friendly industrial 
biotechnological applications and there is a rising demand for large scale production. In this study, a 
Bacillus species 2129 was tested for the xylanase production under submerged cultivation conditions.
Maximum xylanase activities were achieved using oat as the substrate and by optimizing process
conditions such as substrate concentration, pH and nitrogen source using response surface methodology 
(RSM). The maximum enzyme activity was 2.2 U ml-1 at the following test conditions: substrate
concentration-1.7 %, pH -6.807 and NH4Cl concentration-0.3%. Under optimized conditions there was an
8% increase in the enzyme activity and results from statistical approximation in the form of analysis  of 
variance (ANOVA) shows that the squared effects of the variables were significant than both the main and 
interaction effects. The predictions from neural networks showed that a multilayer network (3-6-1) using 
the standard back propagation algorithm was able to predict enzyme activity effectively with R2 values of 
0.9995.
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INTRODUCTION

Xylanase is a hemi-cellulolytic polysaccharide
consisting of 1,4 linked β-D-xylo pyranose residues ,
most commonly used for beer and juice clarification, 
pre-bleaching of kraft pulp, improving digestibility of 
animal feed, bread making and degumming of
vegetable fibers such as jute ramie and hemp [1, 2]. The 
main constituents of microbial xylanolytic enzyme
system are xylanase (endo-1,4-ß -xylanase) and β-
xylosidase (β-D-xyloside xylohydrolase) [3]. Over the 
last few years, interest in xylanase has increased rapidly
in paper and pulp industries due to their bleaching 
potential. Xylanases have a worldwide market of
around 200 million US $ and the widespread use of 
xylanase in commercialized industrial applications
requires extensive studies to optimize their production 
capability [4]. There has been extensive lab and pilot 
scale studies that have dealt with their production,
purification, recovery and characterization [5-8]. On the 
other hand, very few studies have reported their product 

optimization [3, 9, 10]. Commercial mass production of 
xylanase can be quintessentially done by either
submerged or solid state fermentation [2, 11], their 
effectiveness has been often consociated with process
conditions and physico-chemical factors of prior
significance. However the driving force has been to 
ideally produce quick and high quality xylanase from 
simple and inexpensive substrates. Most of the
researches have been targeted on using residues/wastes
from agro and food industry, thereby restricting the
socio-economics related to environmental pollution. 
These residues contain nearly 20-30% hemicellulosic 
material that can be efficaciously used for the
production of xylanase by microorganisms [12]. The
most commonly used substrates so far are; rice bran, 
sugarcane baggase, wheat straw, wheat bran, corn crop, 
rumen, sorghum straw and cassava peel [4, 13-15].

In this study, commercially available Oat was used 
as the substrate for the production of xylanase under 
submerged conditions. Oat grains (Avena sativa) are
high in carbohydrates and contain about 13% protein 
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and 7.5% fat. Studies that have reportedly used oat as 
the substrate for the production of xylanase are sparse 
[16]. Diversified generic species of microorganisms 
have proven to be carriers of rich source of xylanase 
enzyme, especially Bacillus species which can secrete 
high levels of extra cellular xylanase. The amount of 
nitrogen also plays a vital role in enhancing the rate of 
enzyme production. NH4NO3, NaNO3 and (NH4)2SO4
have been used essentially as the nitrogen source [17].
Seyis and Aksoz [7] used a mixture of NH4SO4 and 
urea and found synergistic increase in xylanase activity. 
For successful implementation of this new substrate, 
process parameters such as pH, temperature, substrate 
concentration, cultivation and aeration time has to be 
optimized in appropriate reactor configurations. Though 
there are different optimization tools, factorial
experiments and response surface methodology
provides maximum information based on statistical
principles by performing a minimum number of
experiments [18].

An alternate predictive modeling procedure
consists of a data driven approach wherein the
principles of Artificial Intelligence (AI) is applied with 
the help of neural networks. The concept of neural 
network modeling has widespread applications in the
field of enzymatic biotechnology. Haider et al. [19]
optimized media constituents for enhancing lipase
production by soil microbes using ANN and genetic 
algorithm based techniques. The results of their study 
showed that ANN based model was able to predict the 
system behavior clearly showing lipolytic activity of 
7.69 U ml-1. An ANN model thus developed for such 
systems can be used as an objective function for 
predicting the desired output (enzyme activity). 

This study reports the optimization of substrate
concentration, pH and nitrogen source for enhanced 
production of xylanase by a Bacillus species under
submerged fermentation conditions. Anew, a neural
network based predictive model has been formulated 
using substrate concentration, pH and ammonium
chloride concentrations as the input variables, to predict 
the enzyme activity. 

MATERIALS AND METHODS

Microbial strain: The microbial culture used in this 
study was Bacillus sp. 2129, obtained from National 
chemical laboratory (NCL), Pune, India. Stock cultures 
were maintained on slants of nutrient agar medium 
at 4oC and were  periodically sub cultured to sustain 
microbial activity.

Media composition: The minimal medium used in this 
study had the following composition (per liter): beef

extract 1g, peptone 1g and Sodium chloride 0.5g. Oat,
obtained commercially from Quakers Company was
used as the substrate (carbon source) at varying
concentrations (0.52-2.87%). All other chemicals used 
in this study were of analytical reagent grade purchased
from Sigma Laboratories (India). The values of NH4Cl
and Oat concentration are expressed in percentage, in
(weight/volume ) basis.

Experimental study: Experiments were conducted in 
250 ml Erlenmeyer flasks fitted with butyl rubber
stoppers having a working volume of 100 ml. The
individual experimental flasks containing the media
were sterilized at 15 psi, 121oC for 20 minutes prior to 
inoculation. Bacillus species, maintained on nutrient 
agar slants  were grown for 3 days at 30±1oC. After
sufficient growth, 10 ml of distilled water was
aseptically added to each agar slants . Through mild 
scrapping with a sterilized inoculation loop and by 
periodic shaking, the colonies  were made to suspend. 
For growth, 200 µl of this  suspension was aseptically
transferred and provided as the inoculum to the 100 ml 
media. The Bacillus strain was grown in experimental 
flasks kept in a rotary shaker (150 rpm) at 30±1o C and 
sample aliquots were withdrawn at equal intervals
(12 hrs) for measuring xylanase activity.

Enzyme activity measurements: Xylanase activity 
was measured by monitoring the reducing sugar
concentration released as xylose by the dinitrosalicylic 
acid (DNS) method [32]. The samples were centrifuged 
at 7200 rpm for 15 mins and used for analysis . 0.1 ml of 
this sample was mixed with 0.9 ml of birchwood xylan 
solution (5 g l-1) in acetate buffer (0.1 M) having a pH 
of 5.0 at 60oC for 10 mins. The absorbance was read at 
550 nm using a UV/Vis spectrophotometer (Shimadzu, 
Japan). A unit of xylanase activity was described as the 
amount of enzyme producing 1 µmol of reducing sugar 
equivalent to xylose per minute under standard test 
conditions.

The 23 central composite design: To investigate the 
effect of parameters such as substrate concentration, pH 
and ammonium chloride concentration on the enzyme 
activity, experiments were carried out according to the 
full factorial central composite design (CCD) as
described by Montgomery [18]. The three steps of this 
experimental design include statically designed
experiments, estimating the coefficients in a
mathematical model and predicting the response and 
checking the applicability of the model. A 23 CCD for 
three independent variables, each investigated at five 
levels with six star points and six replicates at the
central point was experimented to fit a second order
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Fig. 1: Schematic of a multi layer perceptron used for predicting enzyme activity

Table 1: Range and levels of process variables

Range and level
-----------------------------------------------

Variables -∝ -1 0 +1 +∝

X1, Substrate concentration 0.5227 1 1.7 2.4 2.8772
X2, pH 1.8068 3 4.75 6.5 7.6931
X3, NH4Cl concentration 0.3318 0.4 0.5 0.6 0.6681

polynomial model that required 20 experiments. The
number of center point runs that the design specifies
depends on certain inherent properties required for the 
design [18, 20]. The start points represent new extreme 
(low and high) for each factor in the design [21]. To
maintain rotatability, the value of α depends on the 
number of experimental runs in the factorial portion of 
the CCD. If the factorial is a full factorial with “k” 
factors, then

1
4k2 α =  

The dependent variable (response) selected for this 
study was the enzyme activity, expressed in U ml-1,
while the independent variables chosen were oat
concentration (X1), media pH (X2) and ammonium
chloride concentration (X3). The range and levels of 
these experimental variables are given in Table 1.

According to the CCD theory, the response
variable can be approximated to the process variables 
by a second order polynomial model of the form: 

Y= b0+ b1X1+ b2X2+ b3X3+ b11X1
2+ b22X2

2+
b33X3

2+ b12X1X2+ b13X13+ b23X2X3+ e

Where:
Y is the measured response, bo the intercept

term, b1-3 are the measures of the effects of variables

(coefficients) and e is the experimental error. The
test factors were coded according to the following
equation.

x
i i

i
i

X Xx
X
−=
∆

Where:
xi is the coded value, Xi is the actual value of the ith

independent variable, Xi
 X is the actual value of the ith

independent variable at the center point and ∆Xi is the 
step change value. The MINITAB 14 (PA, USA)
software was used for regression and graphical analysis 
(Response surface and contour plots) of the data
obtained. Analysis of variance (ANOVA) was used to 
estimate the statistical parameters. The predicted values 
were calculated from the regression model derived fro m
the coefficients of the model and variations were
explained by the determination coefficient (R2 values).

The neural network predictive modeling approach:
A Multi Layer Perceptron (MLP) using the back
propagation algorithm [22] is the most widely used
neural network for forecasting/prediction purposes [19,
23]. Neural networks acquire their name from the
simple processing units in the brain called neurons 
which are interconnected by a network that transmits 
signals between them. These can be thought of as a 
black box device that accepts inputs and produces a 
desired output. MLP generally consists of three layers; 
an input layer, a hidden layer and an output layer
(Fig. 1). Each layer consists of neurons which are 
connected to the neurons in the previous and flowing 
layers by connection weights (Wij). These weights are 
adjusted according to the mapping capability of the 
trained network. An additional bias term (θj) is
provided to introduce a threshold for the activation of 
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Fig. 2: Main effects plot of process parameters on enzyme activity 

neurons. The input data (Xi) is presented to the network 
through the input layer, which is then passed to the
hidden layer along with the weights. The weighted 
output (XiWij) is then summed and added to a threshold 
to produce the neuron input (Ij) in the output layer. This 
is given by:

Ij = Σ WijXi + θj

This neuron input passes through an activation
function f (Ij) to produce the desired output Yj. The 
most commonly used activation function is the logistic 
sigmoid function which takes the form;

jj - I

1
f ( I )

1+e
 =

ANN based predictive modeling was carried out 
using the shareware version of the neural network and 
multivariable statistical modeling software,
NNMODEL (Version 1.4, Neural Fusion, NY)

RESULTS AND DISCUSSION

Optimization by response surface methodology
approach: Experiments were carried out to optimize 
the effects of various process variables such as initial 
substrate (oat) concentration, pH and ammonium
chloride (NH4Cl) concentration for xylanase production 
according to the statistically significant 2k full factorial 
central composite design (CCD). Furthermore, the
results were analyzed by analysis of variance
(ANOVA). This assisted in elucidating the main,
squared and interaction effects among the process

Table 2: Enzyme activity measured at different combinations of
substrate concentration, ph and nh4cl concentration

Enzyme activity (U ml-1)
Run No Oat (%) pH NH4Cl (%) Measured

1 1.0 3.00 0.4 0.333
2 2.4 3.00 0.4 0.280
3 1.0 6.50 0.4 1.253
4 2.4 6.50 0.4 1.788
5 1.0 3.00 0.6 0.131
6 2.4 3.00 0.6 0.869
7 1.0 6.50 0.6 0.172
8 2.4 6.50 0.6 0.096
9 0.523 4.75 0.5 0.175
10 2.877 4.75 0.5 0.070
11 1.7 1.807 0.5 2.190
12 1.7 7.693 0.5 2.082
13 1.7 4.75 0.332 1.267
14 1.7 4.75 0.668 1.274
15 1.7 4.75 0.5 0.486
16 1.7 4.75 0.5 0.480
17 1.7 4.75 0.5 0.484
18 1.7 4.75 0.5 0.490
19 1.7 4.75 0.5 0.481
20 1.7 4.75 0.5 0.492

variables and their influence on the measured enzyme 
activity. All experiments were carried out in sequential 
order as specified by the design, in duplicate and the 
average values of measured enzyme activity were taken 
as the response variable. Figure 2 depicts the main 
effects of process variables on the enzyme activity,
while Table 2 describes the process conditions and the 
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experimentally measured enzyme activity. It was found 
that these profiles neither showed a single increasing or 
decreasing trend, but displayed a combination of both 
increasing and decreasing trends, suggesting the
existence of an optimum condition within the range of 
experimental study. When the substrate concentration 
was increased from 0.5 to 1.7% the enzyme activity 
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ranges of substrate concentration and pH
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Fig. 7: Response surface plot for enzyme activity at 
different ranges of substrate concentration and 
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increased from a value of 0.23 to 1 U ml-1 and then 
decreased to around 0.2 U ml-1 at a substrate
concentration of 2.8772 %. With the increase in pH 
concentration from low to high levels, the enzyme
activity decreased from a value of 2.2 to about
0.45 U ml-1 and then the enzyme activity progressively
increased to a value of 2.2 U ml-1. Similarly, on
increasing the NH4Cl concentration, the enzyme
activity first showed a declining trend and then
increasing trend at a concentration of 0.6681%. The 
maximum enzyme activity was achieved for the
substrate concentration of 1.7%, pH of 6.807 and 
NH4 Cl concentration of 0.5 % (run number 11). The
xylanase production was between 0.48-0.49 U ml-1 in
the medium with the three test variables at their central 
level. The carbon source used in this study is one of the 
major factors affecting the production of enzymes and 
their levels. The graphical representation of the
interactions between process variables and their
response called the response surface plots (RS plots) are 
presented at different levels of substrate concentration, 
pH and NH4Cl concentrations in Fig. 3, 5 and 7. Each 
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contour plot showed an infinite number of
combinations of the two test variables with the other 
variable maintained at ‘0’ level. The peaks and
curvature indicated the maximum enzyme activity in 
the RS plots. The shapes of the surfaces, circular (or) 
elliptical indicated whether the interactions among
different variables were significant or not. In general, 
the RS plots can be dome shaped, inverted ‘U’ shaped, 
some with a saddle point and some do not show any 
regular variation with increase/decrease in variables. 
Each RS plot is further complimented with contour
diagrams (Fig. 4, 6 and 8) that reveal information on the
variation of response on a XY plane. The surface
confined to the smallest curve of the contour diagram 
suggested the location of an optimum operating
condition under the experimental condition. The
graphical illustrations in Fig. 3 and 4 reveal that the
enzyme activity was at its maximum under the
following condition: high pH and low levels of NH4Cl,
high NH4Cl and low pH. These plots showed a shallow 
surface of an optimum condition at the intermediate 
levels and hills at extreme operating conditions. This
interaction behavior causes the optimal level of one
variable to change in response to changes in other 
variables. Mathematically, a saddle point (Fig. 5) is a 
point of a function with two or more variables which is 
at stationary point but not extremum. At such point, the 
surface could resemble a saddle point that curves up in 
one direction and curves down in one or several other 
directions. The saddle shaped surface does not have a 
unique optimum; instead it represents maximum value 
of the response variable in one direction, but a
minimum in one or several directions. As shown in 
Fig. 5, the rate of increase in enzyme activity with an 
increase in value of pH above its saddle point is greater 
than the rate of increase in enzyme activity when 
substrate concentration is increased/decreased from 
the saddle point. Similarly, Fig. 7 shows that higher 

enzymatic activity is achieved by decreasing NH4Cl
below its saddle point value than by increasing it above 
its saddle point value. 

Further, the contour plot (Fig. 4) depicts concentric 
elliptical ridges within the design boundary and this 
runs diagonally from the lower right to the upper left 
end. These types  of contours passes through the
steepest ascent of enzyme activity and the optimum 
operating conditions and in direction of maximum
decline of the response with respect to increasing or 
decreasing values of the process variables. The
interactions between substrate concentration and
pH (Fig. 6) showed a rather complex behavior in 
comparison to those explained earlier. At low and high 
levels of pH, increasing the substrate concentration
increased the enzyme activity up to a maximum and 
then decreased their values. However at intermediate 
levels of pH, irrespective of the values of substrate
concentration, there existed a region where neither an 
increasing nor decreasing trend in the enzyme activity 
was noticed. These are represented by complex saddle 
type contour plot as shown in Fig. 6. Similar type of 
interactions was observed between NH4 Cl and substrate
concentrations (Fig. 8). The non-elliptical nature of the 
contour plots depicts that there is no mutual interaction 
between the test variables. The experimental data was 
then analyzed statistically to obtain the following
regression equation:

YEA = 0.5048 + 0.0707 X1 + 0.111 X2-0.1734 X3
-0.2556 X1

2 + 0.4564 X2
2 + 0.1504 X3

2

-0.0284 X1X2 + 0.0227 X1 X3-0.3951 X2 X3

Where, YEA-Response variable representing
enzyme activity, X1-initial substrate concentration, X2-
pH and X3-NH4Cl concentration.

The determination coefficient value for this model 
equation was reasonably good under the experimental 
condition used in this study. However some of the 
model predictions had large standard errors (Fig. 9).
The ANOVA result for the quadratic model is given in 
Table 3. In general the Fischer’s variance ratio, the F 
value should be higher than the low probability, P 
values, for the predictions to be significant. This
statistical analysis was done at the 95% confidence
interval by the software, MINITAB 14. In this study 
among the main, squared and interaction effects of the 
variables on the enzyme activity, the squared effects 
played a major role for enzyme activity (F value of 
7.61, P value of 0.006 than the main and interaction 
effects.

To understand the pattern of interaction and to 
envision synergistic and antagonistic effects between 
test variables, the student’s t-test and P values were 
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Table 3: ANOVA for the quadratic regression model for enzyme activity

Degrees of Seq sum Adj sum Adj mean
Source freedom of square of square square F value P value

Regression 9 6.483 6.483 0.720 3.59 0.029
Linear 3 0.649 0.649 0.216 1.08 0.401
Square 3 4.575 4.575 1.525 7.61 0.006
Interaction 3 1.259 1.259 0.419 2.09 0.165
Residual Error 10 2.004 2.004 0.2004
Lack-of-fit 5 0.0001 0.0001 0.400
Pure error 5 8.488 8.488 0.00002
Total 19

Table 4: Significance test for main and interaction effects of the variable on enzyme activity measured under varying operating conditions

Independent variables (parameters) Coefficient (ß) Standard error (ß) ‘t’-value P-value

Constant 0.5048 0.1826 2.765 0.020
X1 0.0707 0.1211 0.584 0.572
X2 0.1110 0.1211 0.916 0.381
X3 -0.1738 0.1211 -1.435 0.182
X1

2 -0.2556 0.1179 -2.167 0.055
X2

2 0.4564 0.1179 3.870 0.003
X3

2 0.1504 0.1179 1.275 0.231
X1X2 -0.0284 0.1583 -0.179 0.861
X1X3 0.0227 0.1583 0.143 0.889
X2X3 -0.3951 0.1583 -2.496 0.032

tabulated using the software as shown in Table 4. The 
larger magnitude of t value (either ±) and smaller P 
value, the more significant is the corresponding
coefficient [24]. Student’s t-test was employed to
determine the knowledge of the error mean square that 
is essential in testing the significance of the estimated 
coefficient of the regression equation. The student’s 
t-test value can be obtained by dividing each coefficient 
by its standard error. A large ‘t’ value implies that the 
coefficient is much greater than its standard error. The
squared effects of pH and substrate concentration
(P-0.003 and 0.055) had a major edge over other
interaction and main effects. However the values of "t" 
and their sign imply the impact of their effects on the 
enzyme activity. The squared effects of pH increased 
the enzyme activity (t = 3.87), while the effects of
substrate concentration (t value of-2.167) decreased the
enzyme activity. On the other hand, the interaction 
effects between pH and NH4Cl also showed negative 
effects on the enzyme activity with low P values
(0.032). All the other coefficients (t values) were found 
to be insignificant. More precisely, the results from this 
study relied more on the square and interaction effects 
of the process variables than the main effects, while 
complex interactions were manifested with a statistical 
significance.

The optimum sets of operating conditions were 
obtained by solving the regression equation using the 
Monte Carlo simulation technique. The optimal values 
were first obtained in coded units (0.1523, 0.0934 and 
0.6435) and then converted to the respective uncoded 
(real) units using the formulae described in
Montgomery [18]. The optimal values of initial
substrate concentration, pH and ammonium chloride 
concentration were 1.8066%, 4.193 and 0.5645%
respectively. At these optimal conditions the enzyme 
activity was 2.388 U ml-1, which was higher than the 
activity observed during regular experimentation.
Nissen et al. [25] have suggested an optimal pH of 6-8
for increased production of xylanase. Horikoshi and 
Atsukawa [26] were the first to report xylanase from 
Bacillus sp., which was also active under high pH 
conditions. In this study, the model predicts the optimal 
concentration of xylanase production to be in lower pH 
range. Furthermore, the coded values were substituted 
in the regression equation to obtain the predicted
enzyme activity. The standard errors observed
between the measured and predicted enzyme activity
is shown in Fig. 9. There appears to be a good 
correlation between the measured and predicted
responses as seen from their R2 value (0.8950). The 
findings of the present investigation compare well with 
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Table 5: Network training parameters for choosing the best network 
architecture

Training parameters Range of values Best value
Training cycle 1000-20000 18000
Number of neurons in input layer 3 3
Number of neurons in hidden layer 9-Mar 6
Number of neurons in output layer 1 1
Learning rate 0.3-0.8 0.7
Momentum term 0.1-0.9 0.4
Fixed parameters during training
Error tolerance 0.0001
Epoch size 10
Training algorithm Standard BEP
Number of training data set 20

the work of Ellaiah et al. [27] on response surface 
optimization of the critical medium components for the 
production of alkaline protease by a newly isolated 
Bacillus species. Similarly, CCD techniques have been 
used to optimize maximum xylanase yields by
Schizophyllum commune and Thermomyces sp with
activity of 5.74 U ml-1 and 2.74 U ml-1 under
submerged conditions [28, 29]. Senthil et al. [10]
optimized xylanase yield at 1024 U/gm of wheat bran 
using Aspergillus fischeri under solid state fermentation 
conditions. The optimum condition predicted by the
model was verified by carrying experiments in triplicate 
using the same procedure outlined earlier to monitor the 
enzyme activity. The model predicted enzyme activity 
value agreed well with the experimental result with an 
error of 7.6%.

Enzyme activity predictions by neural network
approach: Artificial neural network based models
requires the best combinations of network parameters 
such as training cycle (Tc), neurons in the input (NI),
hidden (NH) and output layer (NO), learning rate (η),
momentum term (α) and a good algorithm for the 
predictions to be accurate. Determination coefficient 
(R2) values between the measured and predicted outputs 
from the network were used as the performance
indicators to determine the accuracy of the ANN
predictions. The algorithm used for training in this 
study was the standard back error propagation (BEP) 
algorithm, which has potentially shown to posses’ high 
capability in predicting process variables [19]. Table 5 
shows the different network parameters used for
training the network. The model was trained using 
different combinations of these parameters so as to 
achieve maximum determination coefficient values
(target value = 1, i.e., 100% correlation between
measured and predicted variables). This was achieved 
by a vigorous trial and error approach by keeping some 
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Fig. 10: Comparison of measured and predicted enzyme 
activity using ANN and RSM model

training parameters constant and by slowly moving the 
other parameters over a wide range of values. Enzyme
activity, U ml-1 was predicted using oat concentration, 
pH and NH4Cl concentrations as the input variables 
(Fig. 10). It can be observed that , all the data points for
enzyme activity were predicted accurately by the ANN
model, though the predicted values after optimization 
using RSM was significantly lesser than the data driven 
ANN model (R2 = 0.8950). Valdez-Castro et al. [30]
reported that ANN based model was able to predict 
the fed-batch fermentation kinetics of Bacillus
thuringiensis. Similarly, [19] observed that ANN
predictions of lipolytic activity using oil, magnesium 
sulphate and ferrous sulphate as the media constituents 
showed R2 value of 0.99. The weights and bias terms 
between the hidden layer connections obtained after
network training is given in Table 6.

In order to evaluate the significant effect of the 
input parameters on the developed model, a sensitivity 
analysis was carried out by estimating the Absolute
Average Sensitivity (AAS). The sensitivity is calculated 
by summing the changes in the output variables caused 
by moving the input variables by a small amount over 
the entire training set. The AAS is the absolute values 
of the change in  the input [31]. These values for NH4Cl
concentration, oat concentration and pH were 0.5015, 
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Table 6: Weights and bias terms obtained from the trained network

W11 W12 W13 W14 W15 W16

Input to hidden layer weights
Oat concentration, mg/l 0.931 16.614 -13.469 -22.032 -29.410 -9.545
pH 6.436 -28.524 -12.853 7.608 1.926 1.246
NH4Cl concentration, mg/l -23.084 10.903 26.581 13.453 13.756 -1.401
Bias term 7.187 -2.015 -2.892 -2.656 4.909 -0.484

Hidden to output layer weights Enzyme activity (U ml-1) W11-W16-Weights between neurons in input layer and hidden layer
W21 15.033 W21-W26-Weights between neurons in hidden layer and output layer
W22 0.127
W23 3.312
W24 5.956
W25 -7.017
W26 2.237
Bias term -1.137

0.2904 and 0.2080 respectively. According to ANN 
results, NH4Cl concentrations appear to have a
significant effect in predicting the enzyme activity
profiles, compared to both oat concentration and pH.
This could be further supplemented by the results from 
ANOVA, where ‘t’ value of-1.435 and ‘P’ value of
0.182 was observed for NH4 Cl concentration. This was 
also evident from Fig. 2, which shows a linearly 
declining trend in enzyme activity, as the NH4Cl
concentration increases from lower to higher levels 
(0.3318 to 0.6 mg/l). The results from this analysis
reveal the degree of relevance of the input parameters 
to the outputs. 

CONCLUSIONS

This research work demonstrates that response
surface methodology can be a powerful and simple tool 
to effectively analyze the results and to determine
optimal conditions for xylanase production.

Laboratory scale batch experiments were
performed with commercially available oat as the
substrate in a mineral salt media under controlled
conditions. The results from this study showed that 
under optimum values of substrate concentration:
1.8066 %, pH: 4.913 and NH4Cl: 0.5645%, the enzyme 
activity would be 2.388 U ml-1. Further analysis with 
surface plots reveal that pairing factors produce saddle 
point response after a critical value indicating that some 
of the interactions were insignificant. 

The enzyme activity values predicted by the ANN 
model showed better correlation (0.9995) with the
experimental values than the RSM based predictions
(0.8950). The best network architecture (3-6-1),
determined by a trial and error approach showed that; 
learning rate, η -0.7, momentum term, α-0.4, with a

training cycle of 18,000 are favorable conditions for 
high performance predictions. Also, results from
sensitivity analysis, suggests that NH4Cl concentrations 
largely affect the enzyme activity than both oat
concentration and pH. The results from this study
clearly establish the advantage of combining RSM for 
optimizing media constituents and neural networks in 
predicting xylanase production under submerged
cultivation conditions.
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