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Abstract: As processing power becomes cheaper and more available by using cluster of computers, the 
needs for parallel algorithms, which can harness these computing potentials, are increasing. Automatic 
database normalization is an application of parallel algorithms. Normalization is the most exercised 
technique for the analysis of relational databases. It aims at creating a set of relational tables with minimum 
data redundancy that preserve consistency and facilitate correct insertion, deletion and modification. 
Moreover, existing algorithms are usually much time consuming. In this paper, we have proposed a parallel 
algorithm in EREW PRAM model for Automatic Database Normalization. The proposed algorithm has 
been examined with MPI and its implementation results on EDM showed that parallel approach reduces the 
time, efficiently. Exploiting p processors has reduced the time of Automatic Database Normalization to 
((n2+m)/p)+c which c is the communication overhead between the processors, m is the number of simple 
keys and n is the number of determinant keys.
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INTRODUCTION

Normalization as a method of producing good
relational database designs is a well-understood topic in 
the relational database field [1]. The goal of
normalization is to create a set of relational tables with 
minimum amount of redundant data that can be
consistently and correctly modified. The main goal of 
any normalization technique is to design a database that 
avoids redundant information and update anomalies [2]. 
Parallel database systems are being used nowadays 
applications to decision support systems [3, 4].
Automatic database normalization is an application of 
parallel algorithms. The process of normalization was 
first formalized by E.F.Codd. Normalization is often 
performed as a series of tests on a relation to determine 
whether it satisfies or violates the requirements of a 
given normal form. Three normal forms called first
(1NF), second (2NF) and third (3NF) normal forms
were initially proposed. An amendment was later added 
to the third normal form by R. Boyce and E.F. Codd 
called Boyce–Codd Normal Form (BCNF). The trend 
of defining other normal forms continued up to eighth 
normal form. In practice, however, databases are
normalized up to and including BCNF. In this paper, 

we explain minimal functional dependency, 2NF and 
3NF parallel algorithm. The first normal form states 
that every attribute value must be atomic, in the sense 
that it should not be able to be broken into more than 
one singleton value. As a result, it is not allowed to 
have arrays, lists and as such data structures for an 
attribute value. Each normal form is defined on top of 
the previous normal form. That is, a table is said to be 
in 2NF if and only if it is in 1NF and it satisfies further 
conditions. Except for the 1NF, the other normal forms 
of our interest rely on Functional Dependencies (FD) 
among the attributes of a relation. Functional
Dependency is a fundamental notion of the Relational 
Model [5]. Functional dependency is a constraint
between two sets of attributes in a relation of a
database. Given a relation R, a set of attributes X, in R,
is said to functionally determine another attribute Y,
also in R, (written as X→Y) if and only if each X value 
is associated with at most one Y value. That is, given a 
tuple and the values of the attributes in X, one can 
unequally determine the corresponding value of the Y
attribute. It is customarily to call X the determinant set
and Y the dependent attribute.

Given that X, Y and Z are sets of attributes in a 
relation R,   one    can   derive   several   properties   of 
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functional dependencies. Among the most important 
ones are Armstrong's axioms. These axioms are used in 
database normalization:

Subset property (Axiom of Reflexivity): If Y is a
subset of X, then X→ Y

Augmentation (Axiom of Augmentation): If X → Y,
then XZ→ YZ

Transitivity  (Axiom  of  Transitivity): If X → Y and 
Y→ Z, then X→ Z

By repeated application of Armstrong’s rules all 
functional dependencies can be generated. These
functional dependencies provide the bases for database 
normalization [6]. 

Normalization is a major task in the design of
relational databases [7]. Mechanization of the
normalization process saves tremendous amount of time 
and money. Despite its importance, very few algorithms 
have been developed to be used in the design of
commercial automatic normalization tools.

Mathematical normalization algorithm is
implemented in [8]. In [9] a comparison of related
students’ perceptions of different database
normalization approaches and the effects on their
performance is studied. In [10] a set of stereotypes and 
tagged values are used to extend the UML metamode. 
A graph rewrite rule is then obtained to transfer the data 
model from one normal form to a higher normal form. 
In [6] a new complete automated relational database 
normalization method has been presented. It produces 
the dependency matrix and the directed graph matrix, 
first. It then proceeds with generating the 2NF, 3NF and 
BCNF normal forms. All tables are also generated as 
the procedure proceeds. One more side product of this 
research is to automatically distinguish one primary key 
for every final table, which is generated. Depends on 
[4]’s sequential algorithms, this paper presents parallel 
algorithms for automatic database normalization except 
BCNF.

PROPOSED PARALLEL ALGORITHM

In this section, we discuss the details of our
proposed parallel algorithm. We first assumed that we 
have an initialized Dependency Matrix (DM), which is 
used  for representing  dependencies  [6].  Secondly, 
we   will   produce   Directed   Graph  matrix  (DG)  for 

Fig. 1: Graphical representation of dependencies

A B C D E F G
A 2 1 1 1 0 0 0
C 0 0 2 1 1 0 0
D 0 0 0 2 0 0 1
EF 0 0 0 1 2 2 1

Fig. 2: Initial dependency matrix

Determinant keys by a parallel algorithm. Finally,
through pass finding algorithm all possible
dependencies will find. Therefore, the dependency
matrix will be updated by related parallel algorithm.
Figure 1  and  2 shows The DM for Example 1. 

Example  1:  FDs = {A → BCD, C → DE, EF → DG, 
D→ G}

Figure 1 is the graphical representation of the
dependencies.

From a dependency graph, the corresponding DM 
is generated as follows [6]: 

• Define matrix DM [n] [m], where 
n  = Number of Determinant Keys.
m = Number of Simple Keys.

• Suppose that β ⊆ α, γ ⊄ α and
β, γ ∈ {Simple key set}
α, λ∈ {Determinant key set}

• Establish DM elements as follows:
If α→ β⇒ DM [α] [β] = 2
If α→ γ⇒ DM [α] [γ] = 1
Otherwise ⇒ DM [α] [γ] = 0,

The DM for Example 1 is shown in Fig. 2 [6].

Producing directed graph matrix for determinant
keys: In this phase, we analysis two matrices, one of 
them is DM and the other one is DG. The sequential 
algorithm for producing the DG graph follows:

For parallel purpose, we assume that the DM
matrix was produced and each slave processor has this 
matrix that is called Local DM or LDM. The algorithm 
for producing the DG graph in Fig. 3 shows that the 
DM does not change during the algorithm, so we send it

EF

A B C D E F G
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Directed- Graph-Matrix()
{
 for (i=0; i<n; i++)
 for (k= each attribute that composed determinant key i)
 for (j=0; j<n ; j++) {

if (DM[j][k]!=0 && DG[j][i]!=-1)
DG[j][i]=1;

else DG[j][i]=-1; }
}

Fig. 3: Pseudo code of producing the DG graph

if rank = 0
for i=1 to p do
send(DG [n][(n/p*(i-1)], processor i)
else
receive (Local DG, processor 0)

for all processors
{
for (z=n/p* (ranki -1) ; z<n/p* ranki; z++)
 for (k=0; k<m; k++)
 if (LDM[z][k]==2)
 for (j=0; j<n ; j++) {
 if (LDM[j][k]!=0 && DG[j][z]!=-1)
 DG[j][z]=1;
 else DG[j][z]=-1; }
}

Fig. 4: Pseudocode of parallel producing the DG graph

Dependency-closure ()
{
for (i=0; i<n ; i++)
 for(j=0; j<n ; j++)
 if(i!=j && Path[i][j]!=-1) {
 for (k=0; k<m ; k++)
 if(DM[j][k]!=0 && DM[j][k]!=2)
 DM[i][k]=j; }
}

Fig. 5: Recognition of dependency closure

to all the slave processors. In addition, each column of 
the DG matrix is independent from others. Therefore, 
we can send n/p columns for each slave processor. The 
parallel algorithm for producing the DG matrix is
presented in Fig. 4.

After generating the DG matrix, we turn our
attention towards finding all possible paths between all 
pairs. This new matrix will show all transitive
dependencies between determinant keys. There are
many such path finding algorithms like Prim, Kruskal 
and Warshal. Parallel Path finding algorithm works like 
the algorithm in Fig. 4. 

Recognition of dependency closure: After generating 
the path matrix, the dependency-closure algorithm uses 
this matrix for updating the dependency matrix.
Depending  on  the  dependency-closure  algorithm, it is 

if rank = 0
for i=1 to p do
send(global_DM [(n/p*(i-1)][m], processor i)
else
receive (global_DM, processor 0)

for all processors
{
for (z=n/p* (ranki -1) ; z<n/p* ranki; z++)
 for(j=0; j<n ; j++)
 if(z!=j && Path[z][j]!=-1) {
 for (k=0; k<m ; k++)
 if(LDM[j][k]!=0 &&L DM[j][k]!=2)
 global_DM[z][k]=j; }
}

Fig. 6: Parallel algorithm for Recognition of
dependency closure

Circular-Dependency ()
{
 for (i=0; i<n; i++)
 for(j=0; j<m; j++)
 if(global_DM[i][j]!= {0,1,2}) 
 if(FindOne (i, j, j, n)_&& DM[i][j]==1)
 global_DM[i][j]=1;
}

Fig. 7: Replacing transitive dependency with original 
direct dependency

int FindOne (int i, element j, int k, int n)
{
 if(global_DM[j][k]==1 && n>=1) return 0;
 elseif (n<1) return 1;
 else return FindOne (i,global_ DM[i][k], k, n-1);
}

Fig. 8: Replacing transitive dependency with original 
direct dependency

concluded, that path matrix is constant and each DM’s 
row is independent from other rows. Therefore, for
parallel purpose, like the pervious parallel algorithm, 
the master processor sends path matrix and n/p rows of 
the DM for each slave processor (Fig. 5).

Figure 6 shows Parallel algorithm for recognition 
of dependency closure. Because of using DM in the 
next algorithms, a copy is created as global_DM.

Replacing transitive dependency with original direct 
dependency: To tackle circular dependency, the
following circular-dependency algorithm is designed. 
This algorithm internally uses the FindOne recursive 
algorithm.

From Fig. 7 and 8 it can be concluded, the DM 
represents the initial dependency matrix, so in the
parallel algorithm each slave processor has a LDM.
Also,  we  can  understand  that  each DM’s  column  is 
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if rank = 0
 for i=1 to p do
 send(global_DM, global_DM [n][(m/p*(i-1)], processor i)

else
 receive (global_DM, processor 0)

Fig. 9: Parallel Algorithm for replacing transitive
dependency with original direct dependency

for all processors
{
 for (z=n/p* (ranki -1) ; z<n/p* ranki; z++)
 for(j=0; j<m; j++)
 if(global_DM[z][j]!= {0,1,2}) 
 if(FindOne (z, j, j, n)_&& LDM[z][j]==1)
 global_DM[z][j]=1;
}

int FindOne (int i, element j, int k, int n)
{
 if(global_DM[j][k]==1 && n>=1) return 0;
 elseif (n<1) return 1;
 else return FindOne (i, global_DM[i][k], k, n-1);
}

Fig. 10: Parallel algorithm for replacing transitive
dependency with original direct dependency

independent   from   other   columns,    so    the   master 
processor sends m/p columns of global_DM to each 
slave processor.

Figure 9 and 10 show the parallel Algorithm for 
replacing transitive dependency with original direct
dependency.

The proposed normalization process: It is assumed 
that the reader is familiar with the definitions of
different normal forms. On the other hand, tables of a 
relational database are assumed to be in 1NF form, to 
begin with. Our proposed 2NF and 3NF normalization 
process makes use of both dependency and determinant 
key transitive dependencies.

Second normal form (2NF): The goal is to discover all 
partial dependencies, to produce the 2NF form. To do 
this, the DM is scanned row-by-row (ignoring the
primary key row), starting from the first row. If all
values of the simple keys that make up the determinant 
key of the row being scanned are equal to 2 and the 
values of the corresponding columns of the candidate 
key are equal to 2, then a partial dependency is found 
[6]. PKR in Fig. 11 indicates the row of the primary key 
of global_DM.

Sequential algorithm in Fig. 11 shows that each
global_DM’s row is independent from other rows, so 
the master processor sends n/p rows of the global DM 
and related row to the primary key for each slave
processor.

for (z=1 ; z<n; z++ && z!=PKR)
{
 Partial=true;
 for(j=0; j<n && global_DM[z][j]==2 ; j++)
 {
 if(global_ DM[PKR][j]==2 && partial!=false){
 Partial=true; 
 Else
 { Partial=false; break; }
 } 
If(Partial)
 return z;
else
 return -1;
}

Fig. 11: Sequential algorithm for producing finding
partial dependencies

if rank = 0
 for i=1 to p do
 send(global_DM [(n/p*(i-1)][m], processor i)
 send(PKR,DM[PKR], processor i)
else
 receive (global_DM, processor 0)
 receive (PKR, DM[PKR], processor 0)

Fig. 12: Parallel algorithm for finding partial
dependencies

for all processors
{
 for (z=n/p* (ranki -1) ; z<n/p* ranki; z++ & z!=PKR)
 {
 Partial=true;
 for(j=0; j<n && DM[z][j]==2 ; j++)
 if(DM[PKR][j]==2 && X!=false) {
 Partial=true; 
 else
 { Partial=false; break; }
 If(Partial && z!=PKR)
 send(z, processor0)
 }
}

Fig. 13: Parallel algorithm for finding partial
dependencies

Figure 12 and 13 show the Parallel Algorithm for 
finding partial dependencies.

If any partial dependency was reported, to produce 
the 2NF form, we have to create new tables (DM) for 
these partial dependencies [6].

Third normal form (3NF): In order to transform the 
relations into 3NF, each DM is scanned row-by-row
starting from the first row. If a determinant key is 
encountered, whose dependency is neither partial nor it 
is wholly dependent on part of the primary key [11] a 
separate table has to be formed. Of course, if a table is 
previously  formed  a  duplicate  is  not  generated. This 
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For each DM do:
 for (z=0; z<n; z++)
 {
 Transitivity=true; 
 for(j=0; j<n && DM[z][j]==2 ; j++)
 if(DM[PKR][j]==2) 
 { Transitivity=false; break;}
 If (Transitivity) 
 send(Transitivity,z, processor0)
 }
}

Fig. 14: Sequential algorithm for producing 3NF

For each DM do:

if rank = 0
 for i=1 to p do
 send(global_DM [(n/p*(i-1)][m], processor i)
 send(PKR,DM[PKR], processor i)
else
 receive (global_DM, processor 0)
 receive (PKR, DM[PKR], processor 0)

Fig. 15: Parallel algorithm for producing 3NF

for all processors
{
 for (z=n/p* (ranki -1) ; z<n/p* ranki; z++)
 {
 Transitivity=true; 
 for(j=0; j<n && DM[z][j]==2 ; j++)
 if(DM[PKR][j]==2) 
 { Transitivity=false; break;}
 If (Transitivity) 
 send(Transitivity,z, processor0)
 }
}

Fig. 16: Parallel algorithm for producing 3NF

new table will include the determinant key and all other 
attributes, which are transitively, depend on this key. 
The sequential algorithm for producing 3NF follows 
(Fig. 14):

In Fig.15 and 16, database is normalized up to 3NF 
with parallel algorithm. 

RESULTS

In this section, we show data related to efficiency 
of proposed parallel algorithm for automatic database 
normalization on EDM. We have used a Beowulf
cluster with 8 nodes and Ethernet 10/100 network
infrastructure. The algorithm has been implemented
with LAM/MPI ver. 7.1.14. We will examine the
efficiency of our MPI program and the parallel speed of 
proposed algorithm

EDM: EDM is a dependency matrix with 100 rows and 
9000  columns. We  use  this DM for sequential and our 

Fig. 17: MPI Efficiency of a simple arithmetic program

Fig. 18: Speed of parallel algorithm against serial
algorithm

parallel algorithms and we will evaluate our parallel
approach by using it. 

MPI efficiency: In order to examine the efficiency of a 
MPI program, a small arithmetic operations program is 
written. The overall speed of all processors is
determined by taking the amount tasks which should be 
done and dividing the total execution time. This is 
illustrated in Fig. 17. This figure shows that the ratio of 
the growth in number of processors to the growth in 
speed is constant. This indicates that the MPI process is 
efficient.

Speed of parallel algorithm: One of the best
performance  evaluations  in  parallel  programming  is 
the speed comparison of parallel and serial
implementations. In Fig. 18, the speed of parallel and 
serial implementations of recognition of dependency 
closure algorithm is depicted on EDM. We have
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changed the number of processors from 1 to 8
increasingly. The total time for the serial algorithm is 
constant  for  any  value  of  thr  number  of  processors. 

Surprisingly, when we increase the number of
processors to 2 processors, the time gets worth. This is 
because of communication costs. As the number of 
processors increases, the total time of parallel
implementation decreases. 

CONCLUSION

In this study we have proposed a parallel algorithm 
for automatic database normalization. The process is
based on the generation of dependency matrix, directed 
graph matrix and determinant key transitive
dependency matrix. The details of the methods for 2NF, 
3NF are discussed. Implementation results MPI and a 
cluster eight processors indicate a considerable
reduction in time for automatic database normalization.
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