
World Applied Sciences Journal 5 (6): 686-691, 2008
ISSN 1818-4952
© IDOSI Publications, 2008

Corresponding Author: Jalal A. Nasisi, Communication and Computer Research Center, Department of Computer Engineering,
Ferdowsi University of Mashhad, Iran

686

A Novel Parallel Approach for Automatic Database Normalization
1Jalal A. Nasiri, 2Amir H. Bahmani, 3Mahmoud Naghibzadeh and 3Hossein Deldari

1Communication and Computer Research Center,
Department of Computer Engineering, Ferdowsi University of Mashhad, Iran

2Young Researchers Club, Department of Computer Engineering,
Islamic Azad University of Mashhad, Mashhad, Iran

3Department of Computer Engineering, Ferdowsi University of Mashhad, Iran

Abstract: As processing power becomes cheaper and more available by using cluster of computers, the
needs for parallel algorithms, which can harness these computing potentials, are increasing. Automatic
database normalization is an application of parallel algorithms. Normalization is the most exercised
technique for the analysis of relational databases. It aims at creating a set of relational tables with minimum
data redundancy that preserve consistency and facilitate correct insertion, deletion and modification.
Moreover, existing algorithms are usually much time consuming. In this paper, we have proposed a parallel
algorithm in EREW PRAM model for Automatic Database Normalization. The proposed algorithm has
been examined with MPI and its implementation results on EDM showed that parallel approach reduces the
time, efficiently. Exploiting p processors has reduced the time of Automatic Database Normalization to
((n2+m)/p)+c which c is the communication overhead between the processors, m is the number of simple
keys and n is the number of determinant keys.

Key words: Parallel algorithm • Automatic normalization • Relational database • Functional dependency

INTRODUCTION

Normalization as a method of producing good
relational database designs is a well-understood topic in
the relational database field [1]. The goal of
normalization is to create a set of relational tables with
minimum amount of redundant data that can be
consistently and correctly modified. The main goal of
any normalization technique is to design a database that
avoids redundant information and update anomalies [2].
Parallel database systems are being used nowadays
applications to decision support systems [3, 4].
Automatic database normalization is an application of
parallel algorithms. The process of normalization was
first formalized by E.F.Codd. Normalization is often
performed as a series of tests on a relation to determine
whether it satisfies or violates the requirements of a
given normal form. Three normal forms called first
(1NF), second (2NF) and third (3NF) normal forms
were initially proposed. An amendment was later added
to the third normal form by R. Boyce and E.F. Codd
called Boyce–Codd Normal Form (BCNF). The trend
of defining other normal forms continued up to eighth
normal form. In practice, however, databases are
normalized up to and including BCNF. In this paper,

we explain minimal functional dependency, 2NF and
3NF parallel algorithm. The first normal form states
that every attribute value must be atomic, in the sense
that it should not be able to be broken into more than
one singleton value. As a result, it is not allowed to
have arrays, lists and as such data structures for an
attribute value. Each normal form is defined on top of
the previous normal form. That is, a table is said to be
in 2NF if and only if it is in 1NF and it satisfies further
conditions. Except for the 1NF, the other normal forms
of our interest rely on Functional Dependencies (FD)
among the attributes of a relation. Functional
Dependency is a fundamental notion of the Relational
Model [5]. Functional dependency is a constraint
between two sets of attributes in a relation of a
database. Given a relation R, a set of attributes X, in R,
is said to functionally determine another attribute Y,
also in R, (written as X→Y) if and only if each X value
is associated with at most one Y value. That is, given a
tuple and the values of the attributes in X, one can
unequally determine the corresponding value of the Y
attribute. It is customarily to call X the determinant set
and Y the dependent attribute.

Given that X, Y and Z are sets of attributes in a
relation R, one can derive several properties of

World Appl. Sci. J., 5 (6): 686-691, 2008

687

functional dependencies. Among the most important
ones are Armstrong's axioms. These axioms are used in
database normalization:

Subset property (Axiom of Reflexivity): If Y is a
subset of X, then X→ Y

Augmentation (Axiom of Augmentation): If X → Y,
then XZ→ YZ

Transitivity (Axiom of Transitivity): If X → Y and
Y→ Z, then X→ Z

By repeated application of Armstrong’s rules all
functional dependencies can be generated. These
functional dependencies provide the bases for database
normalization [6].

Normalization is a major task in the design of
relational databases [7]. Mechanization of the
normalization process saves tremendous amount of time
and money. Despite its importance, very few algorithms
have been developed to be used in the design of
commercial automatic normalization tools.

Mathematical normalization algorithm is
implemented in [8]. In [9] a comparison of related
students’ perceptions of different database
normalization approaches and the effects on their
performance is studied. In [10] a set of stereotypes and
tagged values are used to extend the UML metamode.
A graph rewrite rule is then obtained to transfer the data
model from one normal form to a higher normal form.
In [6] a new complete automated relational database
normalization method has been presented. It produces
the dependency matrix and the directed graph matrix,
first. It then proceeds with generating the 2NF, 3NF and
BCNF normal forms. All tables are also generated as
the procedure proceeds. One more side product of this
research is to automatically distinguish one primary key
for every final table, which is generated. Depends on
[4]’s sequential algorithms, this paper presents parallel
algorithms for automatic database normalization except
BCNF.

PROPOSED PARALLEL ALGORITHM

In this section, we discuss the details of our
proposed parallel algorithm. We first assumed that we
have an initialized Dependency Matrix (DM), which is
used for representing dependencies [6]. Secondly,
we will produce Directed Graph matrix (DG) for

Fig. 1: Graphical representation of dependencies

A B C D E F G
A 2 1 1 1 0 0 0
C 0 0 2 1 1 0 0
D 0 0 0 2 0 0 1
EF 0 0 0 1 2 2 1

Fig. 2: Initial dependency matrix

Determinant keys by a parallel algorithm. Finally,
through pass finding algorithm all possible
dependencies will find. Therefore, the dependency
matrix will be updated by related parallel algorithm.
Figure 1 and 2 shows The DM for Example 1.

Example 1: FDs = {A → BCD, C → DE, EF → DG,
D→ G}

Figure 1 is the graphical representation of the
dependencies.

From a dependency graph, the corresponding DM
is generated as follows [6]:

• Define matrix DM [n] [m], where
n = Number of Determinant Keys.
m = Number of Simple Keys.

• Suppose that β ⊆ α, γ ⊄ α and
β, γ ∈ {Simple key set}
α, λ∈ {Determinant key set}

• Establish DM elements as follows:
If α→ β⇒ DM [α] [β] = 2
If α→ γ⇒ DM [α] [γ] = 1
Otherwise ⇒ DM [α] [γ] = 0,

The DM for Example 1 is shown in Fig. 2 [6].

Producing directed graph matrix for determinant
keys: In this phase, we analysis two matrices, one of
them is DM and the other one is DG. The sequential
algorithm for producing the DG graph follows:

For parallel purpose, we assume that the DM
matrix was produced and each slave processor has this
matrix that is called Local DM or LDM. The algorithm
for producing the DG graph in Fig. 3 shows that the
DM does not change during the algorithm, so we send it

EF

A B C D E F G

World Appl. Sci. J., 5 (6): 686-691, 2008

688

Directed- Graph-Matrix()
{
 for (i=0; i<n; i++)
 for (k= each attribute that composed determinant key i)
 for (j=0; j<n ; j++) {

if (DM[j][k]!=0 && DG[j][i]!=-1)
DG[j][i]=1;

else DG[j][i]=-1; }
}

Fig. 3: Pseudo code of producing the DG graph

if rank = 0
for i=1 to p do
send(DG [n][(n/p*(i-1)], processor i)
else
receive (Local DG, processor 0)

for all processors
{
for (z=n/p* (ranki -1) ; z<n/p* ranki; z++)
 for (k=0; k<m; k++)
 if (LDM[z][k]==2)
 for (j=0; j<n ; j++) {
 if (LDM[j][k]!=0 && DG[j][z]!=-1)
 DG[j][z]=1;
 else DG[j][z]=-1; }
}

Fig. 4: Pseudocode of parallel producing the DG graph

Dependency-closure ()
{
for (i=0; i<n ; i++)
 for(j=0; j<n ; j++)
 if(i!=j && Path[i][j]!=-1) {
 for (k=0; k<m ; k++)
 if(DM[j][k]!=0 && DM[j][k]!=2)
 DM[i][k]=j; }
}

Fig. 5: Recognition of dependency closure

to all the slave processors. In addition, each column of
the DG matrix is independent from others. Therefore,
we can send n/p columns for each slave processor. The
parallel algorithm for producing the DG matrix is
presented in Fig. 4.

After generating the DG matrix, we turn our
attention towards finding all possible paths between all
pairs. This new matrix will show all transitive
dependencies between determinant keys. There are
many such path finding algorithms like Prim, Kruskal
and Warshal. Parallel Path finding algorithm works like
the algorithm in Fig. 4.

Recognition of dependency closure: After generating
the path matrix, the dependency-closure algorithm uses
this matrix for updating the dependency matrix.
Depending on the dependency-closure algorithm, it is

if rank = 0
for i=1 to p do
send(global_DM [(n/p*(i-1)][m], processor i)
else
receive (global_DM, processor 0)

for all processors
{
for (z=n/p* (ranki -1) ; z<n/p* ranki; z++)
 for(j=0; j<n ; j++)
 if(z!=j && Path[z][j]!=-1) {
 for (k=0; k<m ; k++)
 if(LDM[j][k]!=0 &&L DM[j][k]!=2)
 global_DM[z][k]=j; }
}

Fig. 6: Parallel algorithm for Recognition of
dependency closure

Circular-Dependency ()
{
 for (i=0; i<n; i++)
 for(j=0; j<m; j++)
 if(global_DM[i][j]!= {0,1,2})
 if(FindOne (i, j, j, n)_&& DM[i][j]==1)
 global_DM[i][j]=1;
}

Fig. 7: Replacing transitive dependency with original
direct dependency

int FindOne (int i, element j, int k, int n)
{
 if(global_DM[j][k]==1 && n>=1) return 0;
 elseif (n<1) return 1;
 else return FindOne (i,global_ DM[i][k], k, n-1);
}

Fig. 8: Replacing transitive dependency with original
direct dependency

concluded, that path matrix is constant and each DM’s
row is independent from other rows. Therefore, for
parallel purpose, like the pervious parallel algorithm,
the master processor sends path matrix and n/p rows of
the DM for each slave processor (Fig. 5).

Figure 6 shows Parallel algorithm for recognition
of dependency closure. Because of using DM in the
next algorithms, a copy is created as global_DM.

Replacing transitive dependency with original direct
dependency: To tackle circular dependency, the
following circular-dependency algorithm is designed.
This algorithm internally uses the FindOne recursive
algorithm.

From Fig. 7 and 8 it can be concluded, the DM
represents the initial dependency matrix, so in the
parallel algorithm each slave processor has a LDM.
Also, we can understand that each DM’s column is

World Appl. Sci. J., 5 (6): 686-691, 2008

689

if rank = 0
 for i=1 to p do
 send(global_DM, global_DM [n][(m/p*(i-1)], processor i)

else
 receive (global_DM, processor 0)

Fig. 9: Parallel Algorithm for replacing transitive
dependency with original direct dependency

for all processors
{
 for (z=n/p* (ranki -1) ; z<n/p* ranki; z++)
 for(j=0; j<m; j++)
 if(global_DM[z][j]!= {0,1,2})
 if(FindOne (z, j, j, n)_&& LDM[z][j]==1)
 global_DM[z][j]=1;
}

int FindOne (int i, element j, int k, int n)
{
 if(global_DM[j][k]==1 && n>=1) return 0;
 elseif (n<1) return 1;
 else return FindOne (i, global_DM[i][k], k, n-1);
}

Fig. 10: Parallel algorithm for replacing transitive
dependency with original direct dependency

independent from other columns, so the master
processor sends m/p columns of global_DM to each
slave processor.

Figure 9 and 10 show the parallel Algorithm for
replacing transitive dependency with original direct
dependency.

The proposed normalization process: It is assumed
that the reader is familiar with the definitions of
different normal forms. On the other hand, tables of a
relational database are assumed to be in 1NF form, to
begin with. Our proposed 2NF and 3NF normalization
process makes use of both dependency and determinant
key transitive dependencies.

Second normal form (2NF): The goal is to discover all
partial dependencies, to produce the 2NF form. To do
this, the DM is scanned row-by-row (ignoring the
primary key row), starting from the first row. If all
values of the simple keys that make up the determinant
key of the row being scanned are equal to 2 and the
values of the corresponding columns of the candidate
key are equal to 2, then a partial dependency is found
[6]. PKR in Fig. 11 indicates the row of the primary key
of global_DM.

Sequential algorithm in Fig. 11 shows that each
global_DM’s row is independent from other rows, so
the master processor sends n/p rows of the global DM
and related row to the primary key for each slave
processor.

for (z=1 ; z<n; z++ && z!=PKR)
{
 Partial=true;
 for(j=0; j<n && global_DM[z][j]==2 ; j++)
 {
 if(global_ DM[PKR][j]==2 && partial!=false){
 Partial=true;
 Else
 { Partial=false; break; }
 }
If(Partial)
 return z;
else
 return -1;
}

Fig. 11: Sequential algorithm for producing finding
partial dependencies

if rank = 0
 for i=1 to p do
 send(global_DM [(n/p*(i-1)][m], processor i)
 send(PKR,DM[PKR], processor i)
else
 receive (global_DM, processor 0)
 receive (PKR, DM[PKR], processor 0)

Fig. 12: Parallel algorithm for finding partial
dependencies

for all processors
{
 for (z=n/p* (ranki -1) ; z<n/p* ranki; z++ & z!=PKR)
 {
 Partial=true;
 for(j=0; j<n && DM[z][j]==2 ; j++)
 if(DM[PKR][j]==2 && X!=false) {
 Partial=true;
 else
 { Partial=false; break; }
 If(Partial && z!=PKR)
 send(z, processor0)
 }
}

Fig. 13: Parallel algorithm for finding partial
dependencies

Figure 12 and 13 show the Parallel Algorithm for
finding partial dependencies.

If any partial dependency was reported, to produce
the 2NF form, we have to create new tables (DM) for
these partial dependencies [6].

Third normal form (3NF): In order to transform the
relations into 3NF, each DM is scanned row-by-row
starting from the first row. If a determinant key is
encountered, whose dependency is neither partial nor it
is wholly dependent on part of the primary key [11] a
separate table has to be formed. Of course, if a table is
previously formed a duplicate is not generated. This

World Appl. Sci. J., 5 (6): 686-691, 2008

690

For each DM do:
 for (z=0; z<n; z++)
 {
 Transitivity=true;
 for(j=0; j<n && DM[z][j]==2 ; j++)
 if(DM[PKR][j]==2)
 { Transitivity=false; break;}
 If (Transitivity)
 send(Transitivity,z, processor0)
 }
}

Fig. 14: Sequential algorithm for producing 3NF

For each DM do:

if rank = 0
 for i=1 to p do
 send(global_DM [(n/p*(i-1)][m], processor i)
 send(PKR,DM[PKR], processor i)
else
 receive (global_DM, processor 0)
 receive (PKR, DM[PKR], processor 0)

Fig. 15: Parallel algorithm for producing 3NF

for all processors
{
 for (z=n/p* (ranki -1) ; z<n/p* ranki; z++)
 {
 Transitivity=true;
 for(j=0; j<n && DM[z][j]==2 ; j++)
 if(DM[PKR][j]==2)
 { Transitivity=false; break;}
 If (Transitivity)
 send(Transitivity,z, processor0)
 }
}

Fig. 16: Parallel algorithm for producing 3NF

new table will include the determinant key and all other
attributes, which are transitively, depend on this key.
The sequential algorithm for producing 3NF follows
(Fig. 14):

In Fig.15 and 16, database is normalized up to 3NF
with parallel algorithm.

RESULTS

In this section, we show data related to efficiency
of proposed parallel algorithm for automatic database
normalization on EDM. We have used a Beowulf
cluster with 8 nodes and Ethernet 10/100 network
infrastructure. The algorithm has been implemented
with LAM/MPI ver. 7.1.14. We will examine the
efficiency of our MPI program and the parallel speed of
proposed algorithm

EDM: EDM is a dependency matrix with 100 rows and
9000 columns. We use this DM for sequential and our

Fig. 17: MPI Efficiency of a simple arithmetic program

Fig. 18: Speed of parallel algorithm against serial
algorithm

parallel algorithms and we will evaluate our parallel
approach by using it.

MPI efficiency: In order to examine the efficiency of a
MPI program, a small arithmetic operations program is
written. The overall speed of all processors is
determined by taking the amount tasks which should be
done and dividing the total execution time. This is
illustrated in Fig. 17. This figure shows that the ratio of
the growth in number of processors to the growth in
speed is constant. This indicates that the MPI process is
efficient.

Speed of parallel algorithm: One of the best
performance evaluations in parallel programming is
the speed comparison of parallel and serial
implementations. In Fig. 18, the speed of parallel and
serial implementations of recognition of dependency
closure algorithm is depicted on EDM. We have

World Appl. Sci. J., 5 (6): 686-691, 2008

691

changed the number of processors from 1 to 8
increasingly. The total time for the serial algorithm is
constant for any value of thr number of processors.

Surprisingly, when we increase the number of
processors to 2 processors, the time gets worth. This is
because of communication costs. As the number of
processors increases, the total time of parallel
implementation decreases.

CONCLUSION

In this study we have proposed a parallel algorithm
for automatic database normalization. The process is
based on the generation of dependency matrix, directed
graph matrix and determinant key transitive
dependency matrix. The details of the methods for 2NF,
3NF are discussed. Implementation results MPI and a
cluster eight processors indicate a considerable
reduction in time for automatic database normalization.

ACKNOWLEDGEMENTS

This work was supported by Communications and
Computer Research Center Ferdowsi University,
Ministry of Information Technology, Mashhad, Iran.

REFERENCES

1. Arenas, M. and L. Libkin, 2005. An Information-
Theoretic Approach to Normal Forms for
Relational and XML Data. Journal of the ACM
(JACM), 52 (2): 246-283.

2. Kolahi, S., 2007. Dependency-Preserving
Normalization of Relational and XML Data. J.
Computer Sys. Sci., 73 (4): 636-647.

3. Ameet, S. Talwadker, 2003. Survey of
performance issues in parallel database systems.
J. Computer Syst. Sci. Colleges, 18 (6): 5-9.

4. David Taniar and J. Wenny Rahayu, 2002. Parallel
database sorting, Information science-Application:
An International Journal, 146 (1-4): 171-219.

5. Mora, A., M. Enciso, P. Cordero and IP de
Guzman, 2003. An efficient preprocessing
transformation for functional dependencies sets
based on the substitution paradigm, CAEPIA2003,
pp: 136-146.

6. Amir H. Bahmani, M Naghibzadeh and B
Bahmani, 2008. Automatic Database
Normalization and Primary Key Generation. IEEE
CCECE/CCGEI, pp: 11-16.

7. Du, H. and L. Wery, 1999. A normalization tool
for relational database designers. J. Network
Computer Appl., 22 (4): 215-232.

8. Yazici, A. and Z. Karakaya, 2006. Normalizing
Relational Database Schemas Using Mathematica,
LNCS, Springer- Verlag, 3992: 375-382.

9. Kung, H. and T. Case, Traditional and alternative
database normalization techniques: Their impacts
on IS/IT students’ perceptions and performance.
Intl. J. Inform. Technol. Edu., 1 (1): 53-76.

10. Akehurst, D.H., B. Bordbar, P.J. Rodgers and
N.T.G. Dalgliesh, 2002. Automatic Normalization
via Metamodelling, ASE 2002 Workshop on
Declarative Meta Programming to Support
Software Development.

11. Connoly, Thomas, 2005. Carolyn Begg: Database
Systems. A Practical Approach to Design, 3rd Edn.,
Implementation and Management, Pearson
Education.

