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Abstract: In this study, the incompressible form of the mass and momentum conservation equations are 
solved in a coupled manner using artificial compressibility Method. In this study, two dimensional
incomp ressible forms of the continuity and momentum equations are converted to discrete form by 
application of Galerkin Finite Volume algorithm on triangular meshes. The biharmonic artificial dissipation 
formulation suitable to triangular meshes is applied to guarantee the convergence to the steady state. The 
use of triangular meshes, provide great flexibility for modeling the flow about complex shaped geometries. 
The shortcoming of the efficiency associated with the use of triangular meshes is overcome by application
of a face-base solution algorithmand, techniques for preserving stability and efficiency of the matrix free 
explicit solution method are described. Simulation of a convective dominated flow which may give rise to 
high frequency numerical errors in explicit solution is presented by solution of the potential flow around 
Rankin body. For this case, initially the convergence behavior of the model is assessed by sensitivity 
analysis on the parameters of the Artificial Compressibility Technique, CFL number for computational step 
limit and artificial dissipation coefficient. Then, the accuracy of the computed results are evaluated by 
comparison with the available exact solution.. 

Key words: Incompressible flow • SGS turbulence eddy viscosity model • Artificial compressibility method •
Artificial dissipation formulation • Triangulate mesh • Galerkin finite volume method

INTRODUCTION

The availability of high performance digital
computers and development of efficient numerical
models techniques have accelerated the use of
Computational Fluid Dynamics. The control over
properties and behavior of fluid flow and relative
parameters are the advantages offered by CFD which 
make it suitable for the simulation of the applied
problems. Consequently, the computer simulation of 
complicated flow cases has become one of the
challenging areas of the research works. In this respect, 
many attempts have been made to develop several
efficient and accurate numerical methods suitable for the 
complex solution domain. 

The assumption of incompressibility is valid for 
common civil and environmental engineering problems. 
For the incompressible flow condition, the time
derivative of the density vanishes from the continuity 
equation. If the boundary layer thickness is negligible in 
the flow domain, the inviscid form of the equations of 

motion can be used in desired dimensions. These set of 
equations which consists of time-independent velocity 
and the time-dependent equations of motion,
mathematically represent the behavior of fluid flow. For 
steady state problems, adding a pseudo time derivative 
of pressure to the continuity equation removes the
troublesome problem of coupling pressure-independent
equation of continuity to the pressure-dependent
equations motion. This method has been widely applied, 
mostly with the use of explicit schemes. The
computational procedure is to choose the pressure field 
such that continuity is satisfied at each time-step. This 
procedure normally requires a relaxation scheme
iterating on pressure until the divergence free condition 
is reasonably realized. The method using artificial
compressibility was initially proposed by Chorin to 
achieve an efficient computation. Note that, when the 
solution converges to the steady state condition, the 
pseudo time derivative tends to zero and the
computations results in the incompressible flow
solution [1].
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In present study, the Galerkin Finite Volume
Method is used to derive the discrete formulas of the 
governing equations on triangular meshes. The problem 
of growing up numerical errors, which usually disturbs 
the explicit solution of the formulations are overcome by 
adding artificial dissipation terms suitable for the
triangular meshes. These extra terms are used to damp 
out the unwanted errors and stabilize the numerical
solution procedure while preserving the accuracy of the 
solution. In order to increase the computational
efficiency, some numerical technique such as Runge-
Kutta multi-stage time stepping, residual smoothing and 
the edge-base algorithm are applied. 

In this paper, the described Galerkin finite volume 
algorithm, in which, artificial dissipation for triangular 
meshes are utilized for stabilizing of the explicit solution 
of incompressible steady state flow cases is
describedand, the accuracy of model is assessed for 
various flow conditions.

The effects of some parameters such as the
Artificial compressibility parameters, multistage time
stepping limit and artificial dissipation coefficient which 
would affect the converge behavior of numerical model 
are investigated by sensitivity analysis of the
parameters in the explicit marching solution of a bench 
mark inviscid flow test case.

GOVERNING EQUATIONS

The Navier-Stokes equations for an incompressible 
fluid combined with a Sub-Grid Scale (SGS) turbulence 
viscosity  model  are  used  for  the  large eddy 
simulation (LES). The non-dimensional form of the
governing   equations   in   Cartesian  coordinates  can
be written as:
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W represents the conserved variables while, Fc, Gc

e, are the components of convective flux vector and Fv,
Gv are the components of viscous flux vector of W in 
non-dimensional coordinates x and y, respectively.
Components of velocity u, v and pressure p, are three 
dependent variables. νT is the summation of kinematic 
viscosity ν and eddy viscosity νt.

The variables of above equations are converted to 
non-dimensional form by dividing x and y by L, a 
reference length u and v by Uo, upstream wind
velocityand p by ρU0

2.
The parameter β is introduced using the analogy to 

the speed of sound in equation of state of compressible 
flow. Application of this pseudo compressible transient 
term converts the elliptic system of incompressible flow 
equations into a set of hyperbolic type equations [1]. 
Ideally, the value of the pseudo compressibility is to be 
chosen so that the speed of the introduced waves 
approaches that of the incompressible flow. This,
however, introduces a problem of contaminating the 
accuracy of the numerical algorithm, as well as affecting 
the stability property. On the other hand, if the pseudo 
compressibility parameter is chosen such that these
waves travel too slowly, then the variation of the
pressure field accompanying these waves is very slow. 
Therefore, a method of controlling the speed of pressure 
waves is a key to the success of this approach. The 
theory for the method of pseudo compressibility
technique is presented in the literature [2].

Some algorithms have used constant value of
pseudo compressibility parameter and some workers 
have developed sophisticated algorithms for solving 
mixed incompressible and compressible problems [3]. 
However, the value of the parameter may be considered 
as a function of local velocity using following formula 
proposed [4] 

2 2 2
minMaximum ( or C|U |)β = β

In order to prevent numerical difficulties in the
region of very small velocities (ie, in the vicinity of 
stagnation pints), the parameter β2

min is considered in
the range of 0.1 to 0.3and optimum C is suggested 
between 1 and 5 [5].
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The method of the pseudo compressibility can also 
be used to solve unsteady problems. For this propose, 
by considering additional transient term. Before
advancing in time, the pressure must be iterated until a 
divergence free velocity field is obtained within a
desired accuracy. The approach in solving a time-
accurate problem has absorbed considerable attentions 
[6]. In present paper, the primary interest is in
developing a method of obtaining steady-state
solutions.

NUMERICAL METHOD

The governing equations can be changed to
discrete form for the triangular meshes by the
application of the Galekin Finite Volume Method. This 
method ends up with the following 2D formulation:

Nedgen 1 n
j j c c

k 1

(W W )W P
(F y G x)

t t

+

=

 −∆  = = − ∆ − ∆
∆ ∆ Ω 

 
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Where, Wi represents conserved variables at the 
center of control volume Ω i (Fig. 1). 

Here, Fc,  Gc are the mean values of convective 
fluxes at the control volume boundary faces.
Superscripts n and n+1 shows nth and the n+1th

computational steps. ∆t is the computational step
(proportional to the minimum mesh spacing) applied 
between time stages n and n+1. In present study, a 
three-stage Runge-Kutta scheme is used for stabilizing 
the computational process by damping high frequency
errors, which this in turn, relaxes CFL condition.

In order to damp unwanted numerical oscillations 
associated with the explicit solution of the above
algebraic equation a fourth order (Bi-Harmonic)
numerical dissipation term is added to the convective,
C(Wi) and viscous, D(Wi) terms. Where;

edgesN
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The numerical dissipation term, is formed by using 
the Laplacian operator as follow; 
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The Laplacian operator at every node i, is computed 
using the variables W at two end nodes of all Nedge

edges (meeting node i).
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In equation 10, λi, the scaling factors of the edges 
associated with the end nodes  i of the edge k . This 
formulation is adopted using the local maximum value of 
the spectral radii Jacobian matrix of the governing
equations and the size of the mesh spacing as [12]:
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CONVERGENCE BEHAVIOR OF THE MODEL

In order to study the parameters affecting the
converge behavior of numerical model which is
developed based on the Artificial compressibility
technique, multistage time stepping and adding artificial
dissipation term to stabilize the explicit solution toward 
the steady state condition a bench mark convection 
dominated flow test case is considered in this section. 
The test case is the incompressible inviscid flow facing 
a Rankin body. The flow field around this object is 
modeled in a discrete form using 4033 grid points and 
7750 unstructured triangular elements (Fig. 1) in which 
no physical damping (i.e. diffusion due to the fluid 
viscosity or flow turbulence) excite to damp out the 
numerical oscillations [9].

Coefficient of artificial compressibility: The effect of 
coefficient Artificial compressibility (β2

min, C) on
converge behavior of the solution procedure are
examined. Considering ε4 = 0.0125 and CFL=1.0 for local 
computational steps, various values of Artificial
compressibility coefficient C and the minimum limit of 
the computed local Artificial compressibility parameter 
β2

min are examined (Fig. 2 and 3). As can be seen, the 
values of C = 1 and β2

min = 1 provides better
convergence behavior than the other values.

Allowable  computational  time  step  limit: The effects 
of  allowable computational time step limit (CFL number) 
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Fig. 1: Unstructured triangular mesh for inviscid flow 
facing a Rankin body
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Fig. 2: Effects of C on convergence behavior

which modifies the value of the time step on converge 
behavior of the solution procedure to the steady state 
condition, various values of CFL number for local
computational time step limit are examined by
considering ε4 = 0.0125, C = 1.0 and β2

min = 1.0 (Fig. 4). 
The plots of convergence history for three CFL numbers 
of  1.0,  2.0  and  3.0  for  the  utilized  three-stage Runge-
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Fig. 3: Effects of β2
min on convergence behavior
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Fig. 4: Effects of CFL number on convergence behavior 
of a three stage Runge-Kutta scheme

Kutta scheme show that can support the CFL number 
up to 3.0. Although the increase, the allowable time step 
may provide considerable acceleration in convergence 
toward steady state, the lower CFL numbers may end up 
with less convergence error.

Coefficient of artificial dissipation: The effect of
coefficient of artificial dissipation (ε4) on converge
behavior of the solution procedure are examined.
Considering various CFL number (for local
computational steps), β2

min = 1.0 and C = 1.0, various 
values of artificial dissipation coefficient ε4 are examined 
(Fig. 5). For a case of inviscid flow around stream line 
fitted body such as Rankin body which is modeled by 
relatively coarse mesh, the large and small values of 
values of ε4 may cause some oscillations and limits the 
reduction of convergence error. However, the values 
close to ε4 = 0.0125 provide stable and reasonable
convergence behavior.

COMPUTATIONAL RESULTS

The accuracy of the developed incomp ressible
inviscid  flow  solver  is  examined  by  solving  the  case 
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Fig. 5: Effects of ε4 on convergence behavior

with available analytical solutions which is used in the 
previous section. The analytical solution is obtained 
from potential flow theory by using conformal mapping 
technique [8]. For numerical simulation of the case, unit 
free stream velocity and pressure is imposed at inflow 
and outflow boundaries and at the solid wall nodes 
slipping velocity are considered.

The computations are performed on a triangular 
mesh containing 12397 grid points, 24316 triangular
elements and 36713 faces. 

The numerical solution of the case is performed 
using the Artificial compressibility parameters (β2

min, C), 
CFL  number  and  artificial  dissipation coefficient (ε4) in 

Table 1: Error of computed parameters for inviscid flow around 

Rankin body in comparison with analytical solution

Section Total velocity 3 UHVVXUH

Section 1 2.80% 2.50%

Section 2 1.10% 1.70%

Section 3 3.20% 2.10%

Fig. 6: Sketch and position of sections

optimum range. The computed velocity and pressure 
components are compared with the exact solution in 
three sections (Fig. 6). The comparison of these
components in section 3 (which is critical section
because of dissipation) presents in Fig. 7. This
comparison shows the accuracy of the developed
model, Percentage of error around Rankin body in
comparison with analytical solution in three sections is 
shown in Table 1.

DISCUSSION

In this study, the Galerkin finite volume method is 
introduced, in which, artificial compressibility technique 
for incompressible flow solution, multi-stage time
stepping for stabilizing explicit solution procedure and 
increasing allowable CFL numberand artificial
dissipation formulation of unstructured triangular
meshes for damping out numerical oscillations are
utilized.

The sensitivities of the developed Galerkin finite 
volume method are investigated by solution of a bench 
mark test of inviscid flow (in which no physical
diffusion exists to damp the numerical dissipations). The
effects of the artificial compressibility parametersand 
CFL number of multistage local time stepping limit as 
well as artificial dissipation coefficient on the converge
behavior    of    numerical  model   are   investigated.  By 
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Fig. 7: Comparison of the analytical solution with the 
computed flow parameters on Rankin body

performing a series of sensitivity analysis of the
optimum ranges of the parameters of the model for
explicit solution on triangular meshes are obtained.

Finally, the computed results are compared with the 
analytical solution of the test case. The agreements of 
the computed with exact solutions encourages  for
further developments of the model.

REFERENCES

1. Chorin, A., 1967. A Numerical Method for Solving 
Incompressible Viscous Flow Problems. Journal of 
Computational Physics, 2: 12-26.

2. Chang, J.L. and D. Kwak, 1984. On the Method of 
Pseudo Compressibility for Numerically Solving
Incompressible Flow. AIAA 84-0252, 22nd
Aerospace Science Meeting and Exhibition 1984 
Reno.

3. Turkel, E., 1986. Preconditioning Methods for
Solving the Incompressible and Low Speed
Compressible Equations. ICASE Report, pp: 86-114.

4. Dreyer, J., 1990. Finite Volume Solution to the
Steady Incompressible Euler Equation on
Unstructured Triangular Meshes. M.Sc. Thesis,
MAE Dept., Princeton University.

5. Rizzi, A.and L. Eriksson, 1985. Computation of
Inviscid Incompressible Flow with Rotation. Journal
of Fluid mechanic, 153: 275-312.

6. Belov, A., L. Martinelli and A. Jameson, 1995. A 
New Implicit Algorithm with Multi-grid for
Unsteady Incompressible Flow Calculations. AIAA
95-0049, 33rd Aerospace Science Meeting and
Exhibition 1995 Reno.

7. Yu, D. and A. Kareem, 1996. Two-Dimensional
Simulation of Flow around Rectangular Prisms.
Journal of Wind Engineering and Industrial
Aerodynamics, 62: 131-161.

8. Vallentine, H.R., 1969. Applied Hydrodynamics.
Butterworths, S.I. Edition, London.

9. Liggett, J.A., 1994. Fluid Mechanics. McGraw-Hill
International Edition, Civil Engineering Series.

10. Fox, R.W. and A.T. Mcdonald, 1994. Introduction 
to Fluid Mechanics, 4th Edn. John Wiley & Sons, 
Inc.


