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Abstract: In this paper, we introduce the multilayer preceptron neural network and describe how it can be 
used for function approximation. The back propagation algorithm (including its variants) is the principle 
procedure for training multilayer perceptrons. Car must be taken when training perceptron network to 
ensure that they do not over fit the training data and then fail to generalize well in new situations. So the 
main purpose of this paper lies in studying the effect of changing both the No of hidden layers of MLPs and 
the No of processing elements that exist in the hidden layers on the analyzed properties of Jordan Oil Shale. 
After constructing such a MLP and changing the number of hidden layers, we found that with increasing
the number of processing elements in the hidden layers. We reach to an optional output results w.r.t the 
experimental one or the analytical formulated one. This obtained output is completely matched with the 
main concepts of theoretical visions of ANN.
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INTRODUCTION

A geochemical analysis of El-Lajjun oil shall in 
Jordan was carried out [1]. It was found that El-Lajjun
oil shale consists of the following group: Organic
matter, biogenic calcite and apatite, detrital clay
minerals and quartz. The calorific values of 100
samples were determined. The effect of bore depth,
calcium carbonate, organic carbon and sulfur content on 
the calorific values was studied [1]. The results were 
well correlated by some empirical formula given by [1]:

   Calorific value=352.44 (CaCo3)-0.066(S)0.257(Corg)1.143 (1)

With correlation coefficient of 0.983 and with an 
average standard error of 2.63%. The current
resurgence of interest in ANNs is largely due to the 
emergence of powerful new methods as well as to the 
availability of computational power suitable fir
simulation. The field is particularly exciting today
because ANN algorithms and architectures can be
implemented in VLSI technology for real time
applications [2]. Currently two principal streams can be 
identified in ANN research. Researches in the first 
stream are concerned with modeling the brain and
thereby explain its cognitive behavior. On the other 
hand, the primary aim of researches in the second
streams is to construct useful computers for real world 
problems of pattern recognition by drawing these

principles. In this paper we want to give a complete 
description to neural networks and their application in 
analyzing and studying the properties of Jordan oil 
shale as a recent technique. At the same time, we would 
like to investigate the effect of changing the number of 
processing elements that exist in the hidden layer of the 
ANN on the forecasted parameters. To check the
effectiveness of the described ANN, a comparative
study was done between the estimated parameters by 
ANN and that one that is obtained through experiment 
or calculated using the formula given in Eg.1. 

In this paper, we concentrate on the most common 
neural network architecture called the multilayer
perceptron MLPs. For the purpose of this paper, we will 
look at neural network as function approximators [3]. 
As shown in Fig. 1, we have some unknown function 
that we wish to approximate. We want to adjust the 
parameters of the network so that it will produce the 
same response as the unknown function, if the same 
input is applied to both systems.

For our application, the unknown function may 
correspond to a system (oil shale) we are trying to 
control as a result of analysis, in which case the neural 
network will be the identified plant model. The
unknowing function could also represent the inverse of 
a system (oil shale) we are trying to control and
analyze, in which case the neural network can be used 
to implement the controller. This paper is organized 
from   six  sections.  In  section  two,   we   describe  the 



World Appl. Sci. J., 5 (5): 546-552, 2008

547

Unknown
Function

Neural
Network Adaptation

+ Error

-

+
Predicted
Output

Input Output

Fig. 1: Neural network as function approximator

neuron model. Section three was devoted to Multilayer 
Perception Architecture. Section five discusses a lot of 
obtained results. Finally section six presents the results, 
conclusion and future works done by others. Section 
four was dedicated to describe the operation of
Multilayer Perception Neural Networks. 

NEURON MODEL

The multilayer perception neural network is built 
up of simple components. In the beginning, we will 
describe a single input neuron which will then be
extended to multiple inputs. Next, we will stack these 
neurons together to produce layers [4]. Finally, the
layers are cascaded together to form the network.

Single-input neuron: A single-input neuron is shown 
in Fig. 2. The scalar input p is multiplied by the scalar 
weight W to form Wp, one of the terms that is sent to 
the summer. The other input, 1, is multiplied by a bias b
and then passed to the summer. The summer output n 
often referred to as the net input, goes into a transfer 
function f which produces the scalar neuron output a 
(sometimes "activation function" is used rather than 
transfer function and offset rather than bias).

From Fig. 2, both w and b are both adjustable 
scalar parameters of the neuron. Typically the transfer 
function is chosen by the designer and then the
parameters w and b will be adjusted by some learning 
rule  so  that  the  neuron  input/output relationship
meet  some  specific  goal. The  transfer  function  in 
Fig. 2 may be a linear or nonlinear function of n. A 
particular transfer function is chosen to satisfy some 
specification of the problem that the neuron is
attempting to solve. One  of the  most  commonly  used
functions  is the log-sigmoid transfer function, which is 
shown in Fig. 3 [4].

This transfer function takes the input (which may 
have  any  value  between  plus  and minus infinity) and

Fig. 2: Single input neuron [4]

Fig. 3: Log-sigmiod transfer function

squashes the output into the range 0 to 1 according 
to the expression:

n

1
a

1 e−
=

+
(2)

The log-sigmoid transfer function is commonly
used in multi-layer networks that are trained using the 
back propagation algorithm.

Multiple-input neuron: Typically, a neuron has more 
than  one  input. A neuron with R inputs is shown in 
Fig. 4.  The  individual  inputs  p1, p2,……, pg  are  each
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Fig. 4: Multiple-input neuron 

Fig. 5: Neuron with R inputs, abbreviated notations

weighted by corresponding elements W1,1 W1,2,….W1,R
of the weight matrix W.

The neuron has a bias b, which is summed with the 
weight inputs to form the net input n:

1,1 1 1,2 2 1,R Rn W p W p ... W p b= + + + + (3)

This expression can be written in matrix form as:

n Wp b= + (4)

Where the matrix W for the single neuron case has 
only one row. Now the neuron output can be written as:

a f(Wp b)= + (5)

A particular convention in assigning the indices of 
the elements of the weight matrix has been adopted [4].

The first index indicates the particular neuron
destination for the weight. The second index indicates 
the source of the signal fed to the neuron. Thus, the 
indices in W1,2 say that this weight represents the 
connection to the first (and only) neuron from the
second source [4]. A multiple-input neuron using
abbreviated notation is shown in Fig. 5.

As shown in Fig. 5, the input vector p is
represented   by   the   solid   vertical   bar   at  left.  The 

dimensions of p are displayed below the variable as 
Rx1, indicating that the input is a single vector of R 
elements. These inputs go to the weight matrix W,
which has R columns but only one row in this single 
neuron case.

A constant 1 enters the neuron as an input and is 
multiplied by a scalar bias b. The net input to the 
transfer function f is n, which is the sum of the bias b
and the product Wp. The neuron's output is a scalar in 
this case. If there exit more than one neuron, the
network output would be a vector.

MULTILAYER PERCEPTRON 
NETWORK ARCHITECTURES

Commonly one neuron, even with many inputs,
may not be sufficient. We might need five or ten,
operating parallel, in what we will call a “layer". This 
concept of a layer is discussed below.

A layer of neurons: A single-layer network of S is 
shown in Fig. 6. Note that each of the R inputs is 
connected to each of the neurons and that the weight 
matrix now has s rows.

The layer includes the weight matrix, the summers, 
the bias vector b, the transfer function boxes and the 
output vector a. Each element of the input vector p is 
connected to each neuron through the weight matrix W. 
Each neuron has a bias bi, a summer, a transfer function 
f and an output ai. Taken together, the outputs form the 
output vector a. It is common for the number of inputs 
to a layer to be different from the number of neurons 
(i.e. R≠S). The input vector elements enter the network 
through the weight matrix W:

Fig. 6: Layer of S neurons
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Fig. 7: Layer of S neurons, abbreviated notation

1,1 1,R

s,1 S , R

W ... W
W

W ... W
=    (6)

The row indices of the elements of matrix W
indicate the destination neuron associated with that 
weight, while the column indices indicate the source of 
the input for that weight. Thus, the indices in W3,2 say 
that this weight represents the connection to the third 
neuron from the second source. The S-neuron, R-input,
one-layer network also can be drawn in abbreviated 
notation as shown in Fig. 7.

Here again, the symbols below the variables tell 
that for this layer, p is a vector of length R, W is an S*R 
matrix and a and b are vectors of length S.

As defined previously, the layer includes the
weight matrix, the summation and multiplication
operations, the bias vector b, the transfer function boxes 
and the output vector.

Multiple layers of neurons: Now consider a network 
with several layers which has been implemented in this 
paper for the purpose of analyzing Jordan oil shale 
properties.   In   this   network  each  layer  has  its  own 

weight matrix W, its own bias vector b, a net input 
vector n and an output vector a. Some additional
notation should be introduced to distinguish between 
these layers. Superscripts are used to identify these 
layers. The number of the layer as a superscript is 
appended to the names for each of these variables. 
Thus, the weight matrix for the second layer is written 
as W2. This notation is used in the three-layer network 
shown in Fig. 8.

As shown in Fig. 8, there are R inputs, S1 neurons 
in the first layer, S2 neurons in the second layer, etc. 
The output of layers one and two are the inputs for 
layers two and three. Thus layer 2 can be viewed as a 
one-layer network with R=S1 inputs, S= S2 neurons and 
an S1*S2 weight matrix W2. The input to layer 2 is a1

and the output is a 2. A layer whose output is the 
network output is called an output layer. The other 
layers are called hidden layers. The network shown in 
Fig. 8 has an output layer (layer3) and two hidden 
layers (layers 1 and 2)

STRUCTURE AND OPERATION OF 
MULTILAYER PERCEPTRON 
NEURAL NETWORK (MLP)

MLP neural networks consist if units arranged in 
layers [5]. Each layer is composed of nodes and in the 
fully connected network considered here each node 
connects to every node in subsequent layers. Each MLP 
is composed of a minimum of three layers consisting of 
an input layer, one or more hidden layers and an output 
layer. The input layer distributes the inputs to
subsequent layers. Input nodes have liner activation 
functions and no thresholds. Each hidden unit node and 
each output node have thresholds associated with them 
in addition to the weights. The hidden unit nodes have 
nonlinear activation functions and the outputs have 
linear activation functions. Hence, each signal feeding 
into anode in a subsequent layer has the original input 
multiplied  by a weight with a threshold added and then 

Fig. 8: Three layer network
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Fig. 9: Typical three layer multilayer perceptron neural network

is passed through an activation function that may be 
linear or nonlinear (hidden units). A typical three layer 
network is shown in Fig. 9. Only three layer MLPs will 
be considered in this work since these networks have 
been  shown  to  approximate any continuous function 
[6-8]. For the actual three layers MLP, all of the inputs 
are also connected directly to all of the outputs [5].

The training data consist of a set NV training 
patterns (xp,tp) where P represents the pattern number. 
In Fig. 9, XP corresponds to the N-dimensional input 
vector of the Pth training pattern and YP corresponds to 
the M-dimensional output vector from the trained
network for the Pth pattern. For ease of notation and 
analysis, threshold on hidden units and output units are 
handled by assigning the value of one to an augmented 
vector component denoted by Xp (N+1). The output and 
input units have linear activations. The input to the Jth
hidden unit, netP (j) is expressed [5] as:

N 1
p hi p hk 1

net (j) W (j,k)X (k) 1 j N
+

=
= ≤ ≤∑ (7)

With the output activation for the Pth training pattern, 
Op (j), being expressed by:

p pO ( j) f(net ( j))= (8)

The nonlinear activation is typically chosen to be 
the sigmoid function

pp n e t ( j )

1
f(net (j))

1 e−=
+

(9)

In (7) and (8), the N input units are represented by 
the index K and Whi (J,K) denotes the weight
connecting the Kth input unit to the Jth hidden unit.

The overall performance of the MLP is measured 
by the mean square error (MSE) expressed by :

Nv Nv M 2
p p pp 1 p 1 i 1

1 1
E E [t (i) y (i)]

N N= = =
= = −∑ ∑ ∑ (10)

Where:
M 2

p pi 0
Ep [t (i) y (i)]

=
= −∑ (11)

Ep Corresponds to the error for the Pth pattern and 
tp is the desired output for the Pth pattern. This is also 
allows the calculation of the napping error for the ith

output unit to be expressed by:

M 2
i p pp 1

v

1
E [t (i) y (i)]

N =
= −∑ (12)

with the ith output for the Pth training pattern expressed 
by:

hN 1 N
p oi p oi pk 1 j 1

Y( i ) W (i,k)X (k) W (i,j).O (j)
+

= =
= +∑ ∑ (13)

In (13), Woi(i,k) represents the weight from the 
input nodes to the output nodes and Woh (i,j) represents 
the weight from the hidden nodes to the output nodes.

CONCLUSION

When investigators design neural networks for the 
application presented in this paper, there are many ways 
used to investigate the effects of network structure 
which refers to the specification of network size (i.e. 
number of hidden units) when the number of inputs and 
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Fig. 10: CaCo3 versus gross calorific value

Fig. 11: Corg versus gross calorific value

Fig. 12: S versus gross calorific value
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Table 1: Results summary

Performance MLP ANN 3:10:1 MLP ANN 3:20:1 MLP ANN 3:10:10:1 MLP ANN 3:20:10:1

MSE 120517.0498 94695.29502 105564.1689 96255.51725
NMSE 0.019660591 0.01544815 0.017221248 0.015702678
MAE 239.4225634 213.4408001 220.7435148 209.1266576
Min Abs Error 7.123826454 1.171097513 8.106955387 1.71756787
Max Abs Error 1427.779547 1184.631573 1375.296117 1307.388839
r 0.990186314 0.992293629 0.991392243 0.992167131

outputs are fixed (5) which in turn affects on the o/p 
predicted parameters. A well organized one maybe
based on designing a set of different size networks in an 
ordinary fashion, each with one or more hidden units 
than the previous one. This approach can be designated 
as design methodology one (DM-1). Alternatively, the 
second one is based on designing different size
networks in no particular order. This approach can be 
designated as design methodology two (DM-2).

These two design approaches are significantly
different and the approach chosen often is based on the 
goals set for the network design and the associated 
performance. In general, the more thorough approach 
often used for DM-l may take more time to develop the 
selected network since we may be interested in trying to 
achieve a trade-off between network performance and 
network size. However, the DM-1 approach used in this 
work may produce a superior design since the design 
can be pursued until we will be satisfied that future 
increases in network size produces diminishing returns 
in terms of decreasing training time or testing errors. 
When we design MLP network to analyze the
properties of Jordan oil shale, we reach to the following 
facts: MLP with a lot of hidden layers (3) performs 
more better than with one or two hidden layer specially 
regarding the output performance parameters. Also,
when we compare between the o/p of MLP and the 
mathematical formula, we found that our o/p
performance parameter are best suited with the
experimental. As a future work, we recommend to use 
hybrid  approaches, which  are  a  combination  of 
ANN with other techniques like expert systems, Fuzzy 
logic and Genetic Algorithm (GA) to make such
analysis of Jordan oil Shale properties.
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