
World Applied Sciences Journal 5 (5): 546-552, 2008
ISSN 1818-4952
© IDOSI Publications, 2008

Corresponding Author: Dr. Jamal M. Nazzal, Al Ahliyya Amman University, P.O. Box 19328, Amman, Jordan
546

Multilayer Perceptron Neural Network (MLPs)
For Analyzing the Properties of Jordan Oil Shale

1Jamal M. Nazzal, 2Ibrahim M. El-Emary and 3Salam A. Najim

1,3Al Ahliyya Amman University, P.O. Box 19328, Amman, Jordan
2King Abdulaziz University, P.O. Box 18388, Jeddah, King Saudi Arabia

Abstract: In this paper, we introduce the multilayer preceptron neural network and describe how it can be
used for function approximation. The back propagation algorithm (including its variants) is the principle
procedure for training multilayer perceptrons. Car must be taken when training perceptron network to
ensure that they do not over fit the training data and then fail to generalize well in new situations. So the
main purpose of this paper lies in studying the effect of changing both the No of hidden layers of MLPs and
the No of processing elements that exist in the hidden layers on the analyzed properties of Jordan Oil Shale.
After constructing such a MLP and changing the number of hidden layers, we found that with increasing
the number of processing elements in the hidden layers. We reach to an optional output results w.r.t the
experimental one or the analytical formulated one. This obtained output is completely matched with the
main concepts of theoretical visions of ANN.

Key words: MLP • El-lojjin oil • sigmoid • perceptron • DM-1 • Dm-2

INTRODUCTION

A geochemical analysis of El-Lajjun oil shall in
Jordan was carried out [1]. It was found that El-Lajjun
oil shale consists of the following group: Organic
matter, biogenic calcite and apatite, detrital clay
minerals and quartz. The calorific values of 100
samples were determined. The effect of bore depth,
calcium carbonate, organic carbon and sulfur content on
the calorific values was studied [1]. The results were
well correlated by some empirical formula given by [1]:

 Calorific value=352.44 (CaCo3)-0.066(S)0.257(Corg)1.143 (1)

With correlation coefficient of 0.983 and with an
average standard error of 2.63%. The current
resurgence of interest in ANNs is largely due to the
emergence of powerful new methods as well as to the
availability of computational power suitable fir
simulation. The field is particularly exciting today
because ANN algorithms and architectures can be
implemented in VLSI technology for real time
applications [2]. Currently two principal streams can be
identified in ANN research. Researches in the first
stream are concerned with modeling the brain and
thereby explain its cognitive behavior. On the other
hand, the primary aim of researches in the second
streams is to construct useful computers for real world
problems of pattern recognition by drawing these

principles. In this paper we want to give a complete
description to neural networks and their application in
analyzing and studying the properties of Jordan oil
shale as a recent technique. At the same time, we would
like to investigate the effect of changing the number of
processing elements that exist in the hidden layer of the
ANN on the forecasted parameters. To check the
effectiveness of the described ANN, a comparative
study was done between the estimated parameters by
ANN and that one that is obtained through experiment
or calculated using the formula given in Eg.1.

In this paper, we concentrate on the most common
neural network architecture called the multilayer
perceptron MLPs. For the purpose of this paper, we will
look at neural network as function approximators [3].
As shown in Fig. 1, we have some unknown function
that we wish to approximate. We want to adjust the
parameters of the network so that it will produce the
same response as the unknown function, if the same
input is applied to both systems.

For our application, the unknown function may
correspond to a system (oil shale) we are trying to
control as a result of analysis, in which case the neural
network will be the identified plant model. The
unknowing function could also represent the inverse of
a system (oil shale) we are trying to control and
analyze, in which case the neural network can be used
to implement the controller. This paper is organized
from six sections. In section two, we describe the

World Appl. Sci. J., 5 (5): 546-552, 2008

547

Unknown
Function

Neural
Network Adaptation

+ Error

-

+
Predicted
Output

Input Output

Fig. 1: Neural network as function approximator

neuron model. Section three was devoted to Multilayer
Perception Architecture. Section five discusses a lot of
obtained results. Finally section six presents the results,
conclusion and future works done by others. Section
four was dedicated to describe the operation of
Multilayer Perception Neural Networks.

NEURON MODEL

The multilayer perception neural network is built
up of simple components. In the beginning, we will
describe a single input neuron which will then be
extended to multiple inputs. Next, we will stack these
neurons together to produce layers [4]. Finally, the
layers are cascaded together to form the network.

Single-input neuron: A single-input neuron is shown
in Fig. 2. The scalar input p is multiplied by the scalar
weight W to form Wp, one of the terms that is sent to
the summer. The other input, 1, is multiplied by a bias b
and then passed to the summer. The summer output n
often referred to as the net input, goes into a transfer
function f which produces the scalar neuron output a
(sometimes "activation function" is used rather than
transfer function and offset rather than bias).

From Fig. 2, both w and b are both adjustable
scalar parameters of the neuron. Typically the transfer
function is chosen by the designer and then the
parameters w and b will be adjusted by some learning
rule so that the neuron input/output relationship
meet some specific goal. The transfer function in
Fig. 2 may be a linear or nonlinear function of n. A
particular transfer function is chosen to satisfy some
specification of the problem that the neuron is
attempting to solve. One of the most commonly used
functions is the log-sigmoid transfer function, which is
shown in Fig. 3 [4].

This transfer function takes the input (which may
have any value between plus and minus infinity) and

Fig. 2: Single input neuron [4]

Fig. 3: Log-sigmiod transfer function

squashes the output into the range 0 to 1 according
to the expression:

n

1
a

1 e−
=

+
(2)

The log-sigmoid transfer function is commonly
used in multi-layer networks that are trained using the
back propagation algorithm.

Multiple-input neuron: Typically, a neuron has more
than one input. A neuron with R inputs is shown in
Fig. 4. The individual inputs p1, p2,……, pg are each

World Appl. Sci. J., 5 (5): 546-552, 2008

548

Fig. 4: Multiple-input neuron

Fig. 5: Neuron with R inputs, abbreviated notations

weighted by corresponding elements W1,1 W1,2,….W1,R
of the weight matrix W.

The neuron has a bias b, which is summed with the
weight inputs to form the net input n:

1,1 1 1,2 2 1,R Rn W p W p ... W p b= + + + + (3)

This expression can be written in matrix form as:

n Wp b= + (4)

Where the matrix W for the single neuron case has
only one row. Now the neuron output can be written as:

a f(Wp b)= + (5)

A particular convention in assigning the indices of
the elements of the weight matrix has been adopted [4].

The first index indicates the particular neuron
destination for the weight. The second index indicates
the source of the signal fed to the neuron. Thus, the
indices in W1,2 say that this weight represents the
connection to the first (and only) neuron from the
second source [4]. A multiple-input neuron using
abbreviated notation is shown in Fig. 5.

As shown in Fig. 5, the input vector p is
represented by the solid vertical bar at left. The

dimensions of p are displayed below the variable as
Rx1, indicating that the input is a single vector of R
elements. These inputs go to the weight matrix W,
which has R columns but only one row in this single
neuron case.

A constant 1 enters the neuron as an input and is
multiplied by a scalar bias b. The net input to the
transfer function f is n, which is the sum of the bias b
and the product Wp. The neuron's output is a scalar in
this case. If there exit more than one neuron, the
network output would be a vector.

MULTILAYER PERCEPTRON
NETWORK ARCHITECTURES

Commonly one neuron, even with many inputs,
may not be sufficient. We might need five or ten,
operating parallel, in what we will call a “layer". This
concept of a layer is discussed below.

A layer of neurons: A single-layer network of S is
shown in Fig. 6. Note that each of the R inputs is
connected to each of the neurons and that the weight
matrix now has s rows.

The layer includes the weight matrix, the summers,
the bias vector b, the transfer function boxes and the
output vector a. Each element of the input vector p is
connected to each neuron through the weight matrix W.
Each neuron has a bias bi, a summer, a transfer function
f and an output ai. Taken together, the outputs form the
output vector a. It is common for the number of inputs
to a layer to be different from the number of neurons
(i.e. R≠S). The input vector elements enter the network
through the weight matrix W:

Fig. 6: Layer of S neurons

World Appl. Sci. J., 5 (5): 546-552, 2008

549

Fig. 7: Layer of S neurons, abbreviated notation

1,1 1,R

s,1 S , R

W ... W
W

W ... W
=    (6)

The row indices of the elements of matrix W
indicate the destination neuron associated with that
weight, while the column indices indicate the source of
the input for that weight. Thus, the indices in W3,2 say
that this weight represents the connection to the third
neuron from the second source. The S-neuron, R-input,
one-layer network also can be drawn in abbreviated
notation as shown in Fig. 7.

Here again, the symbols below the variables tell
that for this layer, p is a vector of length R, W is an S*R
matrix and a and b are vectors of length S.

As defined previously, the layer includes the
weight matrix, the summation and multiplication
operations, the bias vector b, the transfer function boxes
and the output vector.

Multiple layers of neurons: Now consider a network
with several layers which has been implemented in this
paper for the purpose of analyzing Jordan oil shale
properties. In this network each layer has its own

weight matrix W, its own bias vector b, a net input
vector n and an output vector a. Some additional
notation should be introduced to distinguish between
these layers. Superscripts are used to identify these
layers. The number of the layer as a superscript is
appended to the names for each of these variables.
Thus, the weight matrix for the second layer is written
as W2. This notation is used in the three-layer network
shown in Fig. 8.

As shown in Fig. 8, there are R inputs, S1 neurons
in the first layer, S2 neurons in the second layer, etc.
The output of layers one and two are the inputs for
layers two and three. Thus layer 2 can be viewed as a
one-layer network with R=S1 inputs, S= S2 neurons and
an S1*S2 weight matrix W2. The input to layer 2 is a1

and the output is a 2. A layer whose output is the
network output is called an output layer. The other
layers are called hidden layers. The network shown in
Fig. 8 has an output layer (layer3) and two hidden
layers (layers 1 and 2)

STRUCTURE AND OPERATION OF
MULTILAYER PERCEPTRON
NEURAL NETWORK (MLP)

MLP neural networks consist if units arranged in
layers [5]. Each layer is composed of nodes and in the
fully connected network considered here each node
connects to every node in subsequent layers. Each MLP
is composed of a minimum of three layers consisting of
an input layer, one or more hidden layers and an output
layer. The input layer distributes the inputs to
subsequent layers. Input nodes have liner activation
functions and no thresholds. Each hidden unit node and
each output node have thresholds associated with them
in addition to the weights. The hidden unit nodes have
nonlinear activation functions and the outputs have
linear activation functions. Hence, each signal feeding
into anode in a subsequent layer has the original input
multiplied by a weight with a threshold added and then

Fig. 8: Three layer network

World Appl. Sci. J., 5 (5): 546-552, 2008

550

Fig. 9: Typical three layer multilayer perceptron neural network

is passed through an activation function that may be
linear or nonlinear (hidden units). A typical three layer
network is shown in Fig. 9. Only three layer MLPs will
be considered in this work since these networks have
been shown to approximate any continuous function
[6-8]. For the actual three layers MLP, all of the inputs
are also connected directly to all of the outputs [5].

The training data consist of a set NV training
patterns (xp,tp) where P represents the pattern number.
In Fig. 9, XP corresponds to the N-dimensional input
vector of the Pth training pattern and YP corresponds to
the M-dimensional output vector from the trained
network for the Pth pattern. For ease of notation and
analysis, threshold on hidden units and output units are
handled by assigning the value of one to an augmented
vector component denoted by Xp (N+1). The output and
input units have linear activations. The input to the Jth
hidden unit, netP (j) is expressed [5] as:

N 1
p hi p hk 1

net (j) W (j,k)X (k) 1 j N
+

=
= ≤ ≤∑ (7)

With the output activation for the Pth training pattern,
Op (j), being expressed by:

p pO (j) f(net (j))= (8)

The nonlinear activation is typically chosen to be
the sigmoid function

pp n e t (j)

1
f(net (j))

1 e−=
+

(9)

In (7) and (8), the N input units are represented by
the index K and Whi (J,K) denotes the weight
connecting the Kth input unit to the Jth hidden unit.

The overall performance of the MLP is measured
by the mean square error (MSE) expressed by :

Nv Nv M 2
p p pp 1 p 1 i 1

1 1
E E [t (i) y (i)]

N N= = =
= = −∑ ∑ ∑ (10)

Where:
M 2

p pi 0
Ep [t (i) y (i)]

=
= −∑ (11)

Ep Corresponds to the error for the Pth pattern and
tp is the desired output for the Pth pattern. This is also
allows the calculation of the napping error for the ith

output unit to be expressed by:

M 2
i p pp 1

v

1
E [t (i) y (i)]

N =
= −∑ (12)

with the ith output for the Pth training pattern expressed
by:

hN 1 N
p oi p oi pk 1 j 1

Y(i) W (i,k)X (k) W (i,j).O (j)
+

= =
= +∑ ∑ (13)

In (13), Woi(i,k) represents the weight from the
input nodes to the output nodes and Woh (i,j) represents
the weight from the hidden nodes to the output nodes.

CONCLUSION

When investigators design neural networks for the
application presented in this paper, there are many ways
used to investigate the effects of network structure
which refers to the specification of network size (i.e.
number of hidden units) when the number of inputs and

World Appl. Sci. J., 5 (5): 546-552, 2008

551

Fig. 10: CaCo3 versus gross calorific value

Fig. 11: Corg versus gross calorific value

Fig. 12: S versus gross calorific value

World Appl. Sci. J., 5 (5): 546-552, 2008

552

Table 1: Results summary

Performance MLP ANN 3:10:1 MLP ANN 3:20:1 MLP ANN 3:10:10:1 MLP ANN 3:20:10:1

MSE 120517.0498 94695.29502 105564.1689 96255.51725
NMSE 0.019660591 0.01544815 0.017221248 0.015702678
MAE 239.4225634 213.4408001 220.7435148 209.1266576
Min Abs Error 7.123826454 1.171097513 8.106955387 1.71756787
Max Abs Error 1427.779547 1184.631573 1375.296117 1307.388839
r 0.990186314 0.992293629 0.991392243 0.992167131

outputs are fixed (5) which in turn affects on the o/p
predicted parameters. A well organized one maybe
based on designing a set of different size networks in an
ordinary fashion, each with one or more hidden units
than the previous one. This approach can be designated
as design methodology one (DM-1). Alternatively, the
second one is based on designing different size
networks in no particular order. This approach can be
designated as design methodology two (DM-2).

These two design approaches are significantly
different and the approach chosen often is based on the
goals set for the network design and the associated
performance. In general, the more thorough approach
often used for DM-l may take more time to develop the
selected network since we may be interested in trying to
achieve a trade-off between network performance and
network size. However, the DM-1 approach used in this
work may produce a superior design since the design
can be pursued until we will be satisfied that future
increases in network size produces diminishing returns
in terms of decreasing training time or testing errors.
When we design MLP network to analyze the
properties of Jordan oil shale, we reach to the following
facts: MLP with a lot of hidden layers (3) performs
more better than with one or two hidden layer specially
regarding the output performance parameters. Also,
when we compare between the o/p of MLP and the
mathematical formula, we found that our o/p
performance parameter are best suited with the
experimental. As a future work, we recommend to use
hybrid approaches, which are a combination of
ANN with other techniques like expert systems, Fuzzy
logic and Genetic Algorithm (GA) to make such
analysis of Jordan oil Shale properties.

REFERENCES

1. Anabtawi, M.Z. and jamal M. Nazzal, 1994. Effect
of composition of el-lajjun oil shale on its
calorific value. Journal of Testing and Evaluation,
pp: 175-178.

2. Nitin Malik, 2005. Artificial Neural Networks and
their Applications. National conference on Unear
thing Technological Developments & their transfer
for serving Masses, GLA ITM, Mathura, Mathura,
India.

3. Martin, T. Hagan and Howard B. Demuth, Neural
Networks for control, www.uldaho.edu

4. Haykin, S., 1999. Neural Networks: A
Comprehensive Foundation, 2nd Edn., New Jersey:
Prentice-Hall.

5. Walter, H. Delashmit and Michael T. Manry, 2005.
Recent Developments in Multilayer Perceptron
Neural Networks. Proceedings of the 7th Annual
Memphis Area Engineering and Science
Conference, MAESC 2005.

6. Hornik, K., M. Stinchcombe and H., White, 1989.
Multilayer feed forward Networks are Universal
Approximators, Neural Networks, 2 (5): 35g, 366.

7. Hornik, K., M. Stinchombe and H. White, 1990.
Universal Approximation of an unknown Mapping
and its Derivatives Using Multilayer Feed forward
Networks. Neural Networks, 3 (5): 551-560.

8. Cybenko, G., 1989. Approximation by
superposition of a sigmoidal function. Mathematics
of control, Signal and Systems, 2 (4): 303-314.

