
World Applied Sciences Journal 5 (2): 211-214, 2008
ISSN 1818-4952
© IDOSI Publications, 2008

Corresponding Author: Ziad A.A. Alqadi, Faculty of Engineering, Al Balqa Applied University
211

Performance Analysis and Evaluation of Parallel Matrix Multiplication Algorithms

Ziad A.A. Alqadi, Musbah Aqel, and Ibrahiem M. M. El Emary1 2 3

Faculty of Engineering, Al Balqa Applied University1

Faculty of Engineering, Applied Science University2

Faculty of Engineering, Al Ahliyya Amman University Amman, Jordan3

Abstract: Multiplication of large matrices requires a lot of computation time as its complexity is O (n). Because3

most current applications require higher computational throughputs with minimum time, many sequential and
parallel algorithms are developed. In this paper, a theoretical analysis for the performance and evaluation of the
parallel matrix multiplication algorithms is carried out. However, an experimental analysis is performed to support
the theoretical analysis results. Recommendations are made based on this analysis to select the proper parallel
multiplication algorithms.

Key words: Parallel processing Matrix multiplication algorithms and Distributed systems

INTRODUCTION In order to make a proper selection for the given

Matrix multiplication is commonly used in the areas of
graph theory, numerical algorithms, digital control, digital
image processing and signal processing. Multiplication of
large matrices requires a lot of computation time as its
complexity is O (n), where n is the dimension of the3

matrix. Because most current applications require higher
computational throughputs, many algorithms based on
sequential and parallel approaches were developed to
improve the performance of matrix multiplication. Even
with such improvements [1], for example, Strassen's
algorithm for sequential matrix multiplication [14] has
shown a limitation in performance. For this reason, parallel
approaches have been examined for decades.

Most of parallel matrix multiplication algorithms use
matrix decomposition that is based on the number of
processors available. This includes the systolic algorithm
[11], Cannon's algorithm [5], Fox and Otto's algorithm
[3], PUMMA (Parallel Universal Matrix Multiplication)
[12], SUMMA (Scalable Universal Matrix Multiplication)
[8] and DIMMA (Distribution Independent Matrix
Multiplication) [9, 10]. Each one of these algorithms uses
the matrices that decomposed into sub-matrices. During
execution process, a processor calculates a partial result
using the sub-matrices that are currently accessed by it.
It successively performs the same calculation on new
sub-matrices, adding the new results to the previous.
When the multiplication sub process is completed, the
root processor assembles the partial results and generates
the complete matrix multiplication result.

multiplication operation and to decide which is the best
suitable algorithm that generates a high throughput with
minimum time, a comparison analysis and a performance
evaluation for the above mentioned algorithms is carried
out using the same performance parameters and based on
parallel processing. Moreover, these algorithms are
implemented using C++ programming language.

PARALLEL COMPUTING PARADIGMS

Parallel computing process depends on how the
processors are connected to a memory. The way of
system connection can be classified into a shared memory
system or distributed memory, each of these two types is
discussed as follows:-

Shared Memory System: In such a system, a single
address space exists, within it every memory location is
given a unique address and the data stored in memory are
accessible to each processor. The P processor reads thei

data written by P processor. Therefore, in order to enforce
sequential consistency, it is necessary to use
synchronization.

The Open MP is one of the popular programming
languages executed on the shared memory system. It
provides a portable, scalable and efficient approach to run
parallel programs in C/C++ and FORTRAN [16, 17]. In
OpenMP, a sequential programming language can be

World Appl. Sci. J., 5 (2): 211-214, 2008

212

Table 1-A: Systolic algorithm [1]
Algorithm Execution time
Transpose B matrix 2n t2

fl

Send A, B matrices to the processors 2m p t2
cm

Multiply the elements of A and B m n t2
f

Switch processors’ B sub-matrix n t2
c

Generate the resulting matrix n t + n t2 2
f c

Total execution time t (m n + 3n) + t (4n)f c
2 2 2

Table 1-B: Cannon’s algorithm [2]
Algorithm Execution time
Shift A, B matrices 4n t2

f

Send A, B matrices to the processors 2n t2
c

Multiply the elements of A and B n t2
f

Shift A, B matrices 2(mn t + 2m n t)c f
2

Generate the resulting matrix n t + n t2 2
f c

Total execution time t (5m n + 5n) + t (2n + 2mn)f c
2 2 2

Table 1-C: Fox’s algorithm with square decomposition [3]
Algorithm Execution time
Send B matrix n t2

c

Broadcast the diagonal elements of A mnp tc

Multiply A and B m n t2
f

Shift A, B matrices mn t + 2m n tc f
2

Generate the resulting matrix n t + n t2 2
f c

Total execution time t (3m n + n) + t (2n + mn(p+1)f c
2 2 2

Table 1-D: Fox’s algorithm with scattered decomposition [4]
Algorithm Execution time
Scatter A n t2

c

Broadcast the diagonal elements of B mnp tc

Multiply A and B m n t2
f

Switch processors’ A submatrix mn tc

Generate the resulting matrix n t + n t2 2
f c

Total execution time t (m n + n) + t (2n + 2m n + mnp)f c
2 2 2 2

Table 1-E: PUMMA (MBD2) [5]
Algorithm Execution time
Scatter A m p t2

c

Broadcast the diagonal elements of B nptc

Multiply A and B m n t2
f

Switch processors’ A submatrix m root(p) t2
c

Generate the resulting matrix n t + n t2 2
f c

Total execution time t (m n + n) +t (2n + m root(p)(p+1)f c
2 2 2 2

Table 1-F: SUMMA [6]
Algorithm Execution time
Broadcast A and B 2mnp tc

Multiply A and B m n t2
f

Generate the resulting matrix n t + n t2 2
f c

Total execution time t (m n + n) +t (n + 2mnp)f c
2 2 2

Table 1-G: DIMMA [7]
Algorithm Execution time
Broadcast A and B 2mnp tc

Multiply A and B m n t2
f

Generate the resulting matrix n t + n t2 2
f c

Total execution time t (m n + n) +t (n + 2mnp)f c
2 2 2

parallelized with preprocessor compiler directives such as
#pragma omp in C and $OMP in FORTRAN based with
library support.

Distributed Memory System: In such a system, each
processor has its own memory and can only access its
local memory. The processors are connected with other
processors via a high-speed communication network.
Processors exchanges information with one another using
send and receive operations. A common approach to
programming multiprocessors is to use message-passing
library routines in addition to conventional sequential
program. [18, 19]

MPI (Message Passing Interface) is useful for a
distributed memory systems since it provides a widely
used standard of message passing program. It provides a
practical, portable, efficient and flexible standard for
message passing [13, 15]. In MPI, data is distributed
among processors, where no data is shared and data is
communicated by message passing.

Performance Evaluation: The MPI technique needs two
kinds of time to complete the multiplication process, t andc

t Where t represents the time it takes to communicatef. c

one datum between processors and t is the time neededf

to multiply or add elements of two matrices. It is assumed
that n × n matrices are multiplied on a number of
processors (p). Each processor holds the n /p elements2

and it was assumed that n /p is set to a new variable m .2 2

A summary of the execution time of every step of each
algorithm [12, 15 and 17] is shown in Table (1).

THEORETICAL ANALYSIS

In order to evaluate the performance of any matrix
multiplication based on using parallel processors and
different algorithms, a theoretical analysis is carried out
based on the following assumptions:

f = number of arithmetic operations units
tf = time per arithmetic operation << tc(time for
communication)
c = number of communication units
q = f / c average number of flops per communication
access
Minimum possible time = f* tf when no
communication
Efficiency(speedup) SP=q*(tf/tc)
f * tf + c* tc = f * tf * (1 + tc/tf * 1/q)

World Appl. Sci. J., 5 (2): 211-214, 2008

213

Table 2: Algorithm analytical variables

Algorithm f C q

(1) (m n + 3n (4n (m n + 3n / (4n2 2) 2) 2 2) 2)

(2) (5m n + 5n) (2n + 2mn) (5m n + 5n) / (2n + 2mn)2 2 2 2 2 2

(3) (3m n + n) (2n + mn(p+1) (3m n + n) / (2n + mn(p+1)2 2 2 2 2 2

(4) (m n + n) (2n + 2m n + mnp) (m n + n) / (2n + 2m n + mnp)2 2 2 2 2 2 2 2

(5) (m n + n) (2n + m root(p)(p+1) (m n + n) / (2n + m root(p)(p+1)2 2 2 2 2 2 2 2

(6) (m n + n) (n + 2mnp) (m n + n) / (n + 2mnp)2 2 2 2 2 2

(7) (m n + n (n + 2mnp) (m n + n / (n + 2mnp)2 2) 2 2 2) 2

However, to apply these analytical variables, some values are assumed as follows: Number of processors (p) = 4, Number of elements (n) = 600, (tf/tc) = 0.1.
So, the following results are obtained for all algorithms as shown in table (3)

Table 3: Theoretical results

Algorithm f C Q SP

(1) 55080000 1440000 38.5 3.85
(2) 271800000 108720000 2.5 0.25
(3) 162360000 270720000 0.599 0.0599
(4) 54360000 109440000 0.4967 0.0497
(5) 54360000 1620000 33.555 3.355
(6) 54360000 1800000 30.2 3.02
(7) 54360000 1800000 30.2 3.02

Table 4: 600 * 600 matrix multiplication

No. of processors systolic cannon fox fox2 pumma Summa Dimma

1 251.69 530.33 390.2 506.49 271.12 149.54 165..97
4 65.5 408.12 236.32 267.244 79.583 45.241 49.39

From the results in Table (4), the performance factors (i.e. speedup and efficiency) for each algorithm can be calculated and the results are shown in table (5),
taking into consideration that: Speedup (SP) = time using (1) processor/time and when using (n) processors=T (1)/T (P). Then, Efficiency (E) = SP/P (must
be closed to 1)

Table 5: Efficiency factors

Algorithm SP E

systolic 3.843 0.961
cannon 1.299 0.325
Fox 1.651 0.413
fox2 1.895 0.474
pumma 3.406 0.852
summa 3.305 0.826
dimma 3.36 0.84

Again, the results in table (4) prove our theoretical conclusion. From the
results in Table (5), it could be concluded that systolic algorithm will give
the best performance (i.e. efficiency), then Pumma algorithm, then dimma
and summa algorithm

So, larger q indicates that time is closer to minimum
f*tf, thus increasing the speed up and the efficiency of
the algorithm. SP must be closer to number of processors
to achieve the highest efficiency. Using the above
assumption and with reference to the information in
Table(1) we can obtain f, c and q for each parallel matrix
multiplication as shown in Table(2).

EXPERIMENTAL RESULTS

Table (4) shows the experimental results obtained by
implementing each algorithm 100 times and Then, ten
fastest five ones are taken and averaged

CONCLUSION AND FUTURE WORKS

A theoretical analysis for the performance of most
seven used algorithms is carried out using one and four
processors. This analysis has shown that systolic
algorithm is considered the best algorithm that produced
a high efficiency and then followed by puma, dimma and
then summa. However, these algorithms are implemented
and run on one and four processors to evaluate their
performance for a matrix multiplication. The experimental
results are matched with the theoretical one. This analysis
is useful for making a proper recommendation to select the
best algorithm among others as a future works to be done
by others.

World Appl. Sci. J., 5 (2): 211-214, 2008

214

REFERENCES 11. Choi, J., J.J. Dongarra and D.W. Walker, Level 3

1. Ziad Alqadi and Amjad Abu-Jazzar, 2005. Analysis of 1992. CNRS-NSF Workshop on Environments and
program methods used for optimizing matrix Tools for Parallel Scientific Computing, Saint Hilaire
multiplication, J. Eng., Vol. 15, NO. 1: 73-78. du Touvet, France, Sept. 7-8, Elsevier Sci. Publishers,

2. Agarwal, R.C., F. Gustavson and M. Zubair, 1994. 12. Choi, J., J.J. Dongarra and D.W. Walker, 1994.
A high-performance matrix multiplication algorithm Pumma: Parallel Universal Matrix Multiplication
on a distributed memory parallel computer using Algorithms on distributed memory concurrent
overlapped communication, IBM J. Res. Develop., computers, Concurrency: Practice and Experience,
Volume 38, Number 6. Vol 6(7): 543-570.

3. Agarwal, R.C., S.M. Balle, F.G. Gustavson, M. Joshi 13. Dongarra, J.J., J. Du Croz, S. Hammarling and I. Duff,
and P. Palkar, 1995. A 3-Dimensional Approach to 1990. A Set of Level 3 Basic Linear Algebra
Parallel Matrix Multiplication, IBM J.Res. Develop., Subprograms, TOMS, Vol. 16, No. 1, pp: 1-16.
Volume 39, Number 5, pp: 1-8, Sept. 14. Dongarra, J.J., R.A. Van de Geijn and D.W. Walker,

4. Alpatov, P., G. Baker, C. Edwards, J. Gunnels, 1994. Scalability Issues Affecting the Design of a
G. Morrow, J. Overfelt, Robert van de Geijn and J. Dense Linear Algebra Library, J. Parallel and
Wu, Plapack: Parallel Linear Algebra Package-Design Distributed Computing, Vol. 22, No. 3, Sept., pp:
Overview, Proceedings of SC 97, to appear. 523-537.

5. Alpatov, P., G. Baker, C. Edwards, J. Gunnels, 15. Edwards, C., P. Geng, A. Patra and R. vande Geijn,
G. Morrow, J. Overfelt, Robert van de Geijn and J. 1995. Parallel matrix distributions: have we been
Wu, 1997. Plapack: Parallel Linear Algebra Package, doing it all wrong?, Tech. Report TR-95-40, Dept of
Proceedings of the SIAM Parallel Processing Computer Sciences, The University of Texas at
Conference. Austin.

6. Anderson, E., Z. Bai, C. Bischof, J. Demmel, 16. Fox, G.C., M.A. Johnson, G.A. Lyzenga, S.W. Otto,
J. Dongarra, J. DuCroz, A. Greenbaum, S. J.K. Salmon and D.W. Walker, 1988. Solving
Hammarling, A. McKenney and D. Sorensen, 1990 Problems on Concurrent Processors, Vol. 1, Prentice
Lapack: A Portable Linear Algebra Library for High Hall, Englewood Cliffs, N.J.
Performance Computers, Proceedings of 17. Fox, G., S. Otto and A. Hey, 1987. Matrix algorithms
Supercomputing '90, IEEE Press, pp: 1-10. on a hypercube I: matrix multiplication, Parallel

7. Barnett, M., S. Gupta, D. Payne, L. Shuler, R. van de Computing 3, pp: 17-31.
Geijn and J. Watts, 1994. Interprocessor Collective 18. Gropp, W., E. Lusk and A. Skjellum, 1994. Using MPI:
Communication Library (InterCom), Scalable High Portable Programming with the Message-Passing
Performance Computing Conference. Interface, The MIT Press.

8. Cannon, L.E., 1969. A Cellular Computer to Implement 19. C.-T. Ho and S.L. Johnsson, 1986. Distributed
the Kalman Filter Algorithm, Ph.D. Thesis Montana Routing Algorithms for Broadcasting and
State University. Personalized Communication in Hypercubes, In

9. Chtchelkanova, A., J. Gunnels, G. Morrow, Proceedings of the 1986 International Conference on
J. Overfelt, R. van de Geijn, 1995. Parallel Parallel Processing, pages 640-648, IEEE.
Implementation of BLAS: General Techniques for
Level 3 BLAS, TR-95-40, Department of Computer
Sciences, University of Texas, Oct.

10. Choi J., J.J. Dongarra, R. Pozo and D.W. Walker,
1992. Scalapack: A Scalable Linear Algebra Library
for Distributed Memory Concurrent Computers,
Proceedings of the Fourth Symposium on the
Frontiers of Massively Parallel Computation. IEEE
Comput. Soc. Press, pp: 120-127.

BLAS for distributed memory concurrent computers,

