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Abstract: The aim of this paper is to introduce a new Double integral transform called Double Kharrat-Toma
transform which is a generalization of the original Kharrat-Toma transform. The proposed integral transform is
applied to solve some illustrative examples. The solutions obtained by application the suggested transform show
the accuracy and the efficiency of this techniques.
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INTRODUCTION

Partial differential equation plays vital role in engineering, applied mathematics, mechanics and general
physics sciences.

To solve this type of equations many numerical methods were known, such as the finite element method
and the finite difference method, as well as semi analytical methods such as: Variational iteration method,
Homotopy perturbation method, and Adomian decomposition method.

In the literature researchers have used many integral transforms combined with some semi analytical
methods to solve linear and nonlinear partial differential equations, namely Laplace Transform, Sumudu
Transform, Natural Transform, Elzaki Transform, Aboodh Transform, Kamal transform, Mahgoub (Laplace-
Carson) transform, Mohand transform, Sawi transform, ARA Transform and Kharrat-Toma Transform [1-12].

In 2020 Kharrat and Toma [11] introduced a new transform called Kharrat-Toma Transform to solve the
ordinary differential equations with initial conditions.

In this study, we propose a new double integral transform which called Double Kharrat-Toma
transform.

The suggested transform is tested through some initial- boundary value problems. Therefore, the Double Kharrat
—Toma transform technique is very convenient and effective.

The rest of the paper is organized as follows. In section 2, Double kharrat-Toma transforms are
introduced, in section 3, Double Kharrat-Toma transform of Partial Derivatives, in section 4, Double Kharrat-
Toma Transform of Some Functions, in section 5, the application for solving initial- boundary value problems is
shown and conclusion in 6.

Double Kharrat-Toma transform:
Let f (x,t)be a function of two variables x and ¢, where x, ¢ > 0. The double Kharrat-Toma transform of

f (x,t)is defined as

o)
BB, [f (x.0]=F(p.s) H f (.t )dd M
whenever the improper integral converges. Here p, s are complex numbers.

The double Kharrat-Toma integral transform and inversion is defined by

X t
00 00 —
2 2

f(x,t) =B[_le_l[F(p,S )] =Bt_1Bx_1 ps JI : ] x,t)dxdl ®))
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Double Kharrat-Toma transform of Partial Derivatives:

Double Kharrat-Toma Transform for first partial derivatives with respect to x is defined asfollows:

BB, [f. (x,t)]=#F<p,s>—p3F(o,s) G

Similarly, Double Kharrat-Toma Transform for first partial derivatives with respect to ¢ is given
by

BB, [f,(x ,r)]=si2F<p,s)—s3F<p,0> @

Double Kharrat-Toma Transform for second partial derivatives with respect to x is defined by

Bth [fxx(X,t)]=#F(p,s)—pF(O,s)—p3Fx(0,s) )

In a similar manner, Double Kharrat-Toma Transform for second partial derivatives with respect to ¢ can be
deduced from a single Kharrat-Toma Transform

B.B, [f,t<x,r>]=si4F(p,s>—sF(p,0>—s3E<p,0) ©

Double Kharrat-Toma Transform of Some Functions:
In this section we give Double Kharrat-Toma transform of some functions

. BB, |f (x.t)]=G(p.s)
I ps’
xt p's’
sin(ax )sin(br) 1 +cf:p4 1 +bZ Zs 4
cos(at )cos(bt ) - zp4 1+‘;)52S4
sinh (ax )sinh (bt ) — 27p4 1 _bZ :S ;
cosh(ax )cosh (b ) 1_’; ;4 1_‘;5284
x t ps SS
¢ 1-p?1-s’

Some Examples
Example 1 Double Kharrat-Toma Transform & First order Partial Differential Equation
Find the bounded solution of [13]
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u, =2u, +u
u(x,0)=e73x x>0z>0

Solution: Taking the Double Kharrat-Toma Transform, we obtain

(7

BB, [u,|=B,B,[2u, +u]
#U(p,s)—pw(o,s)=2L%U(p,s>—s3U(p,0)}+U(p,s)

1 2 3 3
{?—S—z—l}U(P,S):P U(0,s)-2s"U(p,0)

pS

1+3p?

u(x,0)=e_3x = U((p,0)=

3
U (p,s)=—L5—U0:5)-

?—Sﬁ—l (plz—szz—l)(l+3p2)

253p°

5 5 5 5
U(p,S)=p—U(O,S)—1 Sz z .

2 2
I-| —+1
(sz )p

Using B;l , we get

U (x ,s):e[szzHij(o,s)_“_S;2 e(THJX e

+ e
1+2s2 | 1+2s2

2k
U(x,s):e[s2 1) {U(O,s)— s> } $°

Now u(x ,¢) is bounded asx —> oo hence U (x,s) is bounded asx —> oo

Hence,

5
N

U (0,s)— =0
0.5) 1+2s2

5
N

1+2s2

U(0,s)=

Therefore,
5

N —3x
U((x,s)= e
(x.5) 1+ 252

By Inverse Kharrat-Toma Transform B ;1 , we get bounded solution

l/l(x ,t):e—3xe—2t :e—3x—2t (8)

Example 2 Double Kharrat-Toma Transform & One Dimensional Heat Equation
Solve [13]
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u, =ku,,
u (x ,0) =sinzx
u (O,t ) =0
u (1,t ) =0

, O0<x <1 , t>0 9

Solution: Taking the Double Kharrat-Toma Transform, we obtain

BB, [u[]:Bth [kuxx]

SUp)=5"U (p.0) =k % U(p.s)-pU(0.5)-p'U, (0,s)}
u(O,t)zO = U(O,s)zO

7
u(x,O):sinﬂx = U(p,O):L

1+7°p*
1 zp’ k
SUps)=s* 2 =S U (p.5) = kpU, (0,5)
N I+7°p° p
k 1 3 zp’s’
——— |U(p,s)=kpU,(0,s)—
L4 Sz} (p.s)=kp'U,(0,s) 42
ks2p’ ap'lsS
Up,s)=—75——=U,(0,5)—
ks* - p* (ksz—p4)(l+ﬂ2p4)
7 5 7 7
s
U(pos)=—H—U, (05) 5| —F— -y
1— p4 1+kz’s 1— p4 1+7°p
ks* ks*
7 5 5 7
P 7S s p
U(p.s)=—"——| U, (05)- "
(p-s) 1— 1 4{ ©0:5) 1+k7r2s2} 1+kn’s? 1+ 2°p*
ks2p

Applying B ! we get

1 7s’® s°
U(x,s =\/;ssinh x ||U,(0,s)— + sin zzx
(x5) (\/?s { ©0-5) 1+k7z2s2} 1+ k n’s?
Taking limit asx —> 1
1 7s°® s°
U(,s :\/?s sinh U.(0,s)- + sin 7z
(5) (\/?s] < (0:5) 1+k7r2s2} 1+kx%s?

Butu(l,t)zO = U(l,s)zO

5 5
Ozﬁssinh(Lj[Ux(O,s)— 4ol } il S5 sinz

+
\/;s 1+k s’ 1+kx’s
5
TS
U.0,s)—————=0
¢ (0:5) 1+ k73s?
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5
s
U _0,s)=———
* 1+ k 722
Therefore,
5
U(x,s)= sin 7zx
1+krzis?

By Inverse Kharrat-Toma Transform B ;1 , we get bounded solution

2
u(x,t)=e " sinzx (10)

The problem can be interpreted physically. The given equation is the heat equation,where u (x ,¢) gives
the temperature at a point x at time ¢ Consider a section bounded byplanes x=0 & x=I1& the boundary
conditions u(0, t)=0=u(1, t) give the temperature zeroat the planes. The condition u (x, () = sinzx indicates the
initial temperature in 0<x< 1.The u represents the temperature at time > 0 [13].

Example 3 Telegraph Equation
Consider the telegraph equation [14]:

Uy =Uy TU, —U (11)
With the boundary conditions:
2t =2t
u(O,t)ze R u, (O,t)ze (12)
And the initial conditions:
u(x,O)zex , u, (x,O)z—Zex (13)

The exact solution is u (x ,¢ )=e* %

Solution:

Take the double Kharrat-Toma transform of eq (11), and single Kharrat-Toma transform of conditions (12),
(13), and

B,B, [uxx ] =B,B, [“n +u, —u]

1 1
?U@,s)—pU(o,s)—ﬁUx (o,s)=S—4U(p,s)—sU<p,0)—s3U,(p,0)+

1
+S—2U<p,s)—s3U(p,0)—U(p,s)
s*U (p,s)-p’s*U0,8)-p's*U_ (0,s)=p* U (p,s)-p*s°U(p,0)-p*s'U,(p,0)+
+p*s?U(p,s)-p*s’'U(p,0)-p*s*U(p.s)

And the transform of conditions are,

5 5

) S
U O,S = s Ux O,s -
0.5) 1+2s2 0.5) 1+ 2s?
5 5
Upo=—"L—= ., Upon=2"L-
l-p l-p

we obtain:
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1
S —p4 —p4S 2 + P
—p*s’U (p,0)=p*s'U,(p,0)=p*s U (p,0)]

P’ U0.5)+pTs U, (0.5)-
S

1 5.4 s’ 7.4 s’
U(p,s)= ——+p's -
(p-s) s4—p4—p4s2+p4s4[ 1+2s? P 1+2s?
5 5
4.5 P 4.7 P 4.7 P
—pls——+2ps  ———-ps
p - p 1-p? p 1-p
" ) 1 (p5+p7)s9 (—S5+s7)p9
,S =
P s4—p4—p4s2+p4s4 1+2s° l—p2
) | <p5+p7)59 (—S5+S7)p9
s4—p —p4s2 +p4§4 1+2s? l—p2
) 1 (p5+p7)s9 (ss+s7)p9
s4—p4—p4s2 +p454 1+2s2 l—p2
( ) (s4—p4—p452 +p4s4)ssp5
U(p,s)=
(s4—p4—p452 +p4s4)(1+252)(1—p2)
B Ssps ~ 5 ps
(1+25%)(1-p%) 14257 1-p°
By Inverse Kharrat-Toma Transform B t_lB . ! , we get bounded solution
u(x,t)ze_3xe_2t :e—3x—2t (14)

CONCLUSION

In this work, double Kharrat-Toma transform is applied to obtain the solution of linear telegraph [15]

and One Dimensional Heat Equation [17-19]. It may be concluded that double Kharrat-Toma transform is very
powerful and efficient in finding the analytical solution for awide class of partial differential equations.

—_
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