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Abstract: Connectivity graphs are widely used in different branches of engineering, especially in ad hoc
network analysis, decentralized control of Unmanned Air Vehicles (UAV) and robot control. In large 
network simulations, the extensive cost and the huge amount of memory required for performing the 
calculations is a major problem. Connectivity probability and propagation-based link reliability approaches 
are some other calculations which use connectivity-based calculations. Therefore, methods should be 
developed that are fast and require less memory to determine the connectivity-based calculations in order to 
expedite such calculations. In this paper, we focus on applications which use distance between nodes as a 
base in calculations. Dynamic networks in which moving agents produce varying connectivity graphs in 
time increase this type of calculations. We used mean degree distribution versus radio range instead of 
degree distribution for a specified radio range to investigate congestion/interference of networks when the 
approximate method is used. We introduce a modification factor for connectivity distance, R in the 
approximate Manhattan measure to improve accuracy in a wide range of R. The results for two random 
distributions of agents based on Monte Carlo simulations are compared to the present real methods to show 
the superiority of our approach.

Key words: Dynamic networks • connectivity-based calculations • approximate connectivity • link
reliability • Monte Carlo simulation 

INTRODUCTION

Computation of connectivity graphs as a
connectivity-based calculation has developed as a key 
problem in various engineering branches especially in 
communication and control. For example, control of
Unmanned Air Vehicles (UAV) based on decentralized 
control has developed in recent years. Decentralized 
control approach is a result of studying swarms of
insects which offer clear examples of self-organized,
emergent behavior [1]. In the problem of coordinating 
multiple robots, a representation of the configuration 
space appears naturally, by using graph-theoretic
models to describe local interactions in the formation 
[2]. In these cases, graph-based models serve as an 
interface between the discrete and the continuous when 
trying to manage the design complexity associated with 
formation control problems. Notable results for these 
problems have been presented in [3-6].

Network connectivity is considered as a network 
reliability measure and there are various measures of 
connectivity. Two-terminal connectivity measures the 
ability of the network to satisfy the communication 
needs of a specific pair of nodes. Two-terminal
reliability is defined as the probability that there exists 

at least one path in the network between a specific pair 
of nodes.

Reliability is widely used in engineering. In
networks, connectivity reliability means the probability 
that there exists at least one feasible link between two 
nodes under predefined conditions. Reliability problems 
become more and more important as modern systems 
become more and more complex. This motivates the 
study of network reliability, a topic which has been 
extensively studied in the past few decades [7].

The minimum overall two-terminal values can be 
interpreted as the reliability level guaranteed by the 
network to all users. The average overall two-terminal
value provides a measure of the resilience of the
network [8]. Connectivity probability can also be
considered as a network reliability measure. This
measure provides the probability that a randomly
distributed network is connected. 

In simulating large mobile networks, a main
problem is the high cost of storage requirements. It may 
even be impossible to model such networks due to the 
huge extent of storage requirements. The key to
modeling such networks to determine link reliability 
and connectivity probability is to dynamically
determine    the    connectivity   graph.  Therefore,   the 
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connectivity matrix must be computed over and over 
again. As the number of nodes in the network is 
increased, computational time required to determine the 
connectivity graph grows quadratically. Therefore, it is 
necessary to compute the connectivity matrix for
connectivity-based calculations over and over again. 
Thus for the simulation of large dynamic networks it is 
important to develop faster connectivity-based
determination techniques with a reasonable degree of 
accuracy [9, 10].

In this paper, we discuss the problem of
determining connectivity graphs of dynamic networks 
using approximate methods and introduce a new
efficient algorithm for approximating the connectivity 
graph. This method has a good accuracy while it
requires less computation and is much faster than 
previous methods. Results are presented based on
Monte Carlo simulations and may be generalized for 
computation of link reliability and connectivity
probability. Moreover, we used mean degree
distribution versus radio range (MDDVRR) instead of 
degree distribution for a specified radio range
(DDSRR) to investigate congestion/interference of
network when approximate methods are used. We
compared the performance of these measures for two 
different distributions of nodes.

The outline of this paper is as fallows: In section 2 
we introduce graph generation using real and
approximate methods. In section 3 the strategy for
comparing the graphs and some connectivity metrics 
and measures are discussed. In section 4 connectivity 
probability is discussed. Link and network reliability 
objectives are introduced in section 5. In section 6 the 
experimental results in static and dynamic cases
including a comparison of our approximate and present 
real methods for different problem are presented.
Finally in the concluding section the results are
discussed.

GRAPH GENERATION USING REAL 
AND APPROXIMATE METHODS

The most realistic model of connectivity of agents 
which Barrett et al. in [10] label real connectivity is 
based on calculations using Euclidian distance between 
nodes and comparing the obtained results with radio 
distance. This model is based on two-ray ground 
propagation model where the received power is
inversely proportional to the square of the distance up 
to a limiting distance and is inversely proportional to 
the fourth power of the distance beyond that threshold. 
In this model we do not consider radio interference 
effects. Therefore the real model inherently has some 
approximation. For two nodes Ni(xi,yi) and Nj(xj,yj), the 
Euclidian distance is as follows:

                   DE (Ni,Nj) = [(xi-xj)
2 + (yi-yj)

2]1/2 (1)

Radio distance R, is defined as the connectivity 
range for every node which is compared by Euclidian 
distance between a pair of nodes Ni and Nj.

           DE (Ni,Nj) ≤ R => Ni is connected to Nj (2)

        DE (Ni,Nj) > R => Ni is not connected to Nj (3)

In the remainder of the paper we name this method 
as the real method and use it for comparison with our 
proposed algorithms. In order to save computational 
time, R2 is used instead of R for comparison with the 
square of Euclidian distance. This saves the
computation of root square for computing the distance 
between every pair of nodes. Computationally this
model includes two subtractions, two multiplications, 
an addition and a comparison which must be carried out 
for each pair of nodes. Therefore, the total amount of 
computational time, TE, for n nodes will be:

                 TE = (2Ts +2Tm + Ta + Tc) * 





 n

2
(4)

where Ts, Tm, Ta and Tc are the computational times of a 
subtraction, a multiplication, an addition and a
comparison respectively. 

Using the number of clock cycles required for the 
execution of instructions on an Intel Pentium 4
processor [11] results in:

TE = (2*3+2*5+3+1)* 





 n

2
=10 (n2+n) clock cycles  (5) 

This is the case for an undirected network since 
radio range is equal for all nodes in undirected
networks. Barrett et al. have investigated the
performance of some approximate measures like
Manhattan distance metric for connectivity, k-means
cluster connectivity and box connectivity for
determining connectivity graphs. They have shown that 
the Manhattan distance is one of the best approximate 
measures for computing the connectivity graph of
undirected networks [10]. We have based our method 
upon this metric and have implemented a fast algorithm 
which reduces the computational time in dynamic
networks. The Manhattan distance for two nodes Ni and
Nj is simply the sum of component-wise distances:

           RMij = |xi-xj| + |yi-yj| (6)

The computations for this metric include two
subtractions,  an  addition  and three comparisons being 
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two comparisons for the absolute values and one for 
comparing RMij with R for each pair of nodes [10]. 
Therefore the total amount of computational time TM,
for n nodes will be:

                    TM = (2Ts + Ta + 3Tc) * 





 n

2
(7)

which on a Pentium 4 Intel processor will require

  T M = (2*3+3+3*1)* 





 n

2
 = 6 (n2+n) clock cycles (8)

Comparing the results of equations (5) and (8)
shows that by using Manhattan measure instead of 
Euclidian measure the computational time reduces by 
40%. This reduction can be appreciable when the
number of nodes is very large because the
computational time is proportional to the square of n..

COMPARING CONNECTIVITY GRAPHS: 
METRICS AND MEASURES

In order to evaluate the efficiency of our method 
well-established techniques for comparing radio
connectivity graphs were used and the connectivity 
matrices (real and approximate) in both static and
dynamic networks were compared. In each case after 
determining the connectivity matrices, they were
compared with each other. Two different approaches 
were used for comparing the graphs. The first
comparison approach which is more statistical is based 
on degree of nodes. In the first approach two different 
methods are used. In the first method DDSRR of nodes 
for a network are determined using real and
approximate measures. DDSRR shows the number of 
nodes which have different possible degrees in the 
network. The results are compared to investigate
congestion of network when approximate methods are 
used. Here, two graphs are considered to be similar if 
they have the same DDSRR. Also MDDVRR is used as 
a measure. In this method mean degree of nodes for 
different connectivity distances is determined using real 
and approximate methods. Two graphs are considered 
to be similar if they have the same MDDVRR. In the 
second approach the resultant connectivity matrices are 
compared. In other words, links are compared one by 
one and Hamming distance between their connectivity 
matrices is used. A connectivity matrix for each graph 
is set up where every 1 in the matrix shows the
connection between the nodes corresponding to the 
related row and column nodes. Hamming distance from 

Fig. 1: An illustration of the percent Hamming of two 
graphs as well as the weighted percent
Hamming distance. In the approximate graph 
the misses are circled and the false positives are 
boxed

one binary vector to another is the number of
corresponding elements which differ. For example H
([1101], [0110]) = 3.

An example of comparing two connectivity
matrices is shown in Fig. 1. Obviously the size of
graphs to be compared must be the same. A deficiency
of the Hamming distance is that it is not invariant with 
respect to graph size and one cannot draw any sound 
conclusions from it when comparing networks of
various sizes. If we divide the Hamming distance by the 
number of elements of the connectivity matrix we will 
have a metric that is invariant with respect to the size of 
the graphs. Barrett and et al. in [10] called this metric 
the percent Hamming distance and denoted it %H.

                            %H = H * 100 / n2 (9)

The Hamming distance between the two graphs is 
H(r,a) = 6. For matrices in Fig. 1:

            %H (r, a) = (4+2) * 100/ 42 = 37.5 % (10)

CONNECTIVITY PROBABILITY: 
DEFINITION AND ANALYSIS

At first we describe some of the concepts related to 
the problem of network connectivity in a static
environment where the nodes do not move. Then we 
define connectivity when the nodes are mobile as in an 
ad hoc network and introduce connectivity probability 
as a measure of network connectivity in a dynamic 
network.

Let D be a bounded domain on the Euclidean plane 
R2 = {(x, y) | x, y ε R} with piecewise smooth borders. 
Assume that there are n nodes inside the domain. At t = 
0 the nodes are somehow placed using a random
distribution and then they start moving around. Let d i = 
(xi,yi) be the radius vector of node i. Further, we assume 
that every node has a transceiver with communication 
range dR: If  the  distance  between  two  nodes is larger 
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than dR, they cannot establish a direct communication 
link. Nodes can transmit information by using multi-
hop connections. 

By definition a network is connected (or fully
connected) if for every pair of nodes there exists a path 
between them. On the other hand, a network is
connected if there exists a path, i.e., a sequence of 
distinct nodes such that consecutive nodes are adjacent, 
between any two nodes in the network [12].

Note that for a network to be connected we require 
existence of a path from source to destination at any 
moment in time. Connectivity probability is used to 
quantify the network connectivity. In the static
environment (when the positions of nodes are fixed), 
the probability for a network to be connected depends 
on the density of the nodes and their connectivity range. 
To evaluate the connectivity probability in a typical 
static simu lation scenario, a number of nodes are placed 
randomly in the simulation area. A random variable is 
introduced which is equal to one if the network is found 
connected and zero if it is disconnected. The average of 
this random variable over several trials gives the
connectivity probability [13, 14]. Madsen et al. [13] 
showed how to extend this approach to the case of a 
dynamic network.

Under motion of nodes a semi-axis of time R+ is 
divided into intervals t 1

±,  t2±, t 3
±, … where tk

+ (t k
-)

denotes a time interval during which the network is 
connected (disconnected). Let's introduce the function f 
+(t) such that f +(t) = 1 if t ε t k

+  and f +(t) = 0 if t ε t k
-

.Time intervals t k
± can be considered as randomly 

distributed; thus, f+(t) is a stochastic process [13]. 
In  a  dynamic  network, connectivity probability 

CP+ is defined by

                                CP+ = E [f +(t)] (11)

Where E [.] stands for the expected value (if it 
exists). The  function  f-(t) can be introduced in a 
similar fashion:

k

k

1 t t
f (t)

0 t t+

∈⋅ = 
∈

(12)

The probability that a network is disconnected is 
given by

CP- = E [f-(t)]
Since

f +(t) =1-f-(t)
then
                                 CP+ + CP-= 1.

One can see that in general the probability CP + is 
time-dependent: CP + = CP +(t). For stationary
stochastic processes CP+(t) = constant. If the stationary 
process is ergodic, then equality (11) can be substituted 
with the following: 

T
T

0
lim f (t)dt CP+ +

→∞ =∫ (13)

By definition, the system is ergodic if a measure of 
any invariant sub-domain of the phase space is either 
equal to zero or is equal to the measure of the whole 
space. This equality is equivalent to the following:

2
CP lim mes(T [0, ])+ +

τ→∞= ∩ τ
τ

(14)

where T+ = U t k
+ and mes stands for measure of a 

domain. In this case it is the total length of the intervals 
T + n [0, t ]. That is, the probability that a network is 
connected can be defined as a density of set T+ on the 
semi-axis R+ = {t | t > 0}. Therefore, the problem of 
connectivity  of  a  network  consisting of moving 
nodes is reduced to the problem of existence and 
estimation of the expected value in equation (11). If the 
mobility  model  is stationary and ergodic, then 
formula (14) can be used to estimate connectivity
probability as in [14, 15].

Dynamical systems theory can be used for
modeling the movement of nodes in an ad hoc mobile 
network. In homogeneous ad hoc mobile networks,
where the properties and specification of the nodes are 
the same, we can reasonably assume that the movement 
of nodes can be described by the same system of
differential equations. If we introduce some form of
randomization in the movement pattern of nodes, then it
would require construction of stochastic differential
processes. In the theory of dynamical systems, a phase 
flow that is a group of shifts along the trajectories is 
introduced which generates a dynamical system. The 
system can be described by differential equations of the 
following form [13]:

x g(x), x= ∈ Π (15)

where  Π is the phase space, x is a set of
coordinates in Π (usually it is position and velocity) 
and dot means time differentiation. Let n be the number
of nodes and x(1), …, x(n) are their phase coordinates. 
Then these coordinates satisfy the following differential 
equations:

(k) (k)x g(x ), k 1,...,n= = (16)
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Its phase space = Π x … x Π = (Π)n is a direct 
product  of  n   copies  of  initial  phase  space and 
phase coordinates  = (x(1), …, x(n)) are a set of
coordinates of individual nodes. Note that if the system 
(15) has an invariant measure µ in Π, then the system 
(16) also has an invariant measure in, that is a direct 
product  = µ1 x …x µn.

The problem of estimation of the connectivity
measure can be simplified significantly if dynamical
system (16) is ergodic in . The key result of the 
ergodic theory is Birkhoff ergodic theorem. Then for 
almost all solutions of the ergodic system (15) the
following equality holds:

T

ˆ ˆ1 f(x)dµˆlim f(x(t))dt
T mes→∞

Π

=
Π∫ ∫ (17)

where
ˆ ˆˆ ˆmes dµ µ( )

Π

Π = = Π∫ (18)

is the measure of the whole phase space [13].
Let, for example, f be a characteristic function of a 

measurable domain D: f ( ) = 1 if ε D and f ( ) = 0 if 
ε. Due to the fact that f is limited and D is measurable, 
function f:→R is integrable. In this case, the left-side of 
(17) is equal to the fraction of time interval 0=t=T when 
(t) lies in the domain D. Then the connectivity
probability of a network will be equal to the right-side
of (17) that in this case is:

                            CP+ = mes D/ mes (19)

Formula (19) is computationally more efficient
than  evaluating  the  expected  value  as  shown  by 
Madsen et al. in [13] and it can easily be implemented 
easily using Monte Carlo simulations.

LINK AND NETWORK RELIABILITY

In network reliability analysis, a
telecommunication network with unreliable
components  can  be  modeled  as  an undirected 
network N (V, L) with node set V={v1,…,vn} and link 
set L={l1,…,lm} under the following assumptions [16]:

• Nodes are perfectly reliable; however, links fail 
randomly.

• Each link li ∈ L, independently of other links, can 
be in either of two states, that is operative or failed, 
with respective probabilities pi and q i=1-pi.

• No repair is allowed.

Let X ={x1,x2,…, xm} denote the state vector of 
N(V, L) such that xi = 1 if link li is in the operative state 
and xi= 0 if link li is in the failed state. Hence, the 
probability of observing a particular state X is given by

ll L i i iPr[X] = [q+x(2p-1)]⊆Π (20)

The main function of a telecommunication network 
is to provide connectivity service. Let U ⊆ V be a set of 
some specified nodes of N(V, L) that is a subset of all 
the nodes in the network. Network reliability analysis is 
concerned with the probability that all nodes in U are
connected to each other, directly or indirectly. With 
respect to connectivity, a network can be in either of 
two states: connected or not connected. Therefore, the 
structure function is defined as:

1 if allnodesinUareconnected
(X)

0 otherwise


Φ = 


(21)

In order to compute the network reliability, we
must calculate the expected value of the structure
function Φ (X), i.e.,

                R = E Φ(X) = Σx⊆S Φ (X)Pr X (22)

where S is the state space of the all possible network 
states [16]. If U= V, that is the network to be
connected, then Equation (22) refers to all-terminal
reliability.

THE PROPOSED LINK RELIABILITY MODEL

Radio distance dR, is defined as the connectivity 
range for every node which is compared by calculated 
distance between a pair of nodes Ni and Nj. If the 
calculated range between nodes is less than dR, the 
nodes are considered to be connected. Obviously the 
reliability of a fully connected link is 1, but in real ad 
hoc networks, radio range is not sharp and after a
distance radio connection is deteriorated due to weather 
conditions, quality of transceivers, existence of high 
rise buildings or hills. Thus the reliability of a link is 
less than 1 and some how decreases as the distance 
between the two nodes increases. We present a model
for link reliability here. 

We assume that for distances less than a fraction of 
dimension of square region (or diagonal of circular
region) of simulation, aD where 0<a<1, there is no 
reliability degradation. For distances longer than dR, the 
link  reliability  is  assumed  to  be zero since there is no 
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connection. For distances between aD and dR the link 
reliability can be modeled using various methods based 
on the propagation model. 

The free space model (FS) is the simplest
propagation model. It only assumes that there is a direct 
path between transmitter t and receiver r. The path must 
be clear from obstacles. The received power Pr depends
on the transmitted power Pt, the gain of the receiver and 
transmitter antennas (Gt, Gr), the wavelength λ, the
distance d between the node pair and a system loss 
coefficient L. Except the distance d between the nodes, 
the other factors are system-wide constant parameters. 
The received power Pr changes with the distance
between the sender and the receiver [17-19].

x
: : y

r,FS 2
P G G

P
L(4 /d)

λ
=

π
(23)

Given the relationship between received power and 
d, we can define link reliability as a function of
distance.

Based on free space propagation model, the
reliability of links can be modeled generally as follow: 

                            RL(d) = A/d2 + B (24)

where A and B are constants. Reliability model must 
satisfy a main condition:

                                     RL(d) ≤ 1 (25)

Using boundary conditions RL (aD) = 1 and RL
(dR) = 0, where D is the dimension of square region (or 
diagonal of circular region) of simulation, our FS-based
model can be introduced as: 

         DE (ni, nj) ≤ aD => ni is connected to n j
            and the reliability of link is: RL = 1. (26)

aD<DE (ni, nj) < dR => ni is partially connected to nj
and the reliability of link is: 

   RL(d) = (a 2 D2)(1-(dR
2 / DE

2 (ni, nj))/(a 2 D2-dR
2) (27)

      dR ≤ DE (ni, nj) => ni and n j are disconnected 
               and Reliability of link is: RL = 0 (28)

It means that in distances less than a fraction of the 
dimensions of the region, the reliability of connection is 
equal to one and for longer distances through radio 
range, the reliability decreases. For distances equal to or 
larger than the radio range, no connection exists and the 
reliability  of  connection  will be equal 0. For distances 

between the above mentioned limits, the reliability of 
connection is inversely proportional to the square of the 
distance between nodes. Default FS radio range is 250 
meter [20].

The Two Ray Ground propagation model (TRG) is 
an improved version of the free space model (FS). We 
used only FS model as a pilot and more discussions can 
be found in [21]. 

EXPERIMENTAL RESULTS IN STATIC 
AND DYNAMIC CASES

Monte Carlo simulations were carried out in static 
and dynamic cases. In each case two spatial
distributions were used for the nodes in the network-
namely normal and uniform. The region occupied by 
the nodes is considered to be a unit square for uniform
spatial distribution and a circle with a radius of 2.5 for 
normal spatial distribution. Normal and uniform
distributions were used as representatives for uniformly 
and non-uniformly distributed networks. In each
distribution, MDDVRR, DDSRR and the percent
Hamming (%H) measures for the real and the
approximate methods were determined. In static case, 
the performance of Manhattan method and modified 
Manhattan method were experimented using Monte
Carlo simulations. In section 5.1 the acceptable
performance of Manhattan measure for nodes which are 
distributed normally and uniformly is shown. Then a 
modification factor is introduced to improve the
performance of the Manhattan measure and the results 
are used in the dynamic case to implement our
algorithm which is presented in section 5.2.

Monte carlo simulations in static case:  In order to 
carry out the Monte Carlo simulations in static case two 
networks were constructed whose nodes had a spatially 
normal and uniform distribution respectively. In each 
network, the mean degree of nodes for every R was 
calculated from which MDDVRR was determined. For 
degree calculation, we used three different methods: 
precise method using Euclidean distance, approximate 
method using Manhattan distance measure and
Manhattan measure using modified connectivity range. 
We used a zero mean unity variance normal distribution 
in which more than %99 of nodes are located in a circle 
with a radius of 2.5. We calculated real and
approximate measures for a range of R from 0.01 to 1.4 
(diagonal of unit square) for uniform and 5 for normal 
distribution with 0.01 increments. Circular and square 
regions are representatives for two different regions of 
nodes in two dimensional space. We used averaging of 
results to minimize changes. For every R, computations
were repeated 10 times and averaged, yielding an rms 
error of less than %5.



World Appl. Sci. J., 4 (6): 755-771, 2008

761

                                                           (a)                                                               (b)

Fig. 2: DDSRR for (a) normal and (b) uniform spatial distribution of nodes resulted from approximate Manhattan 
and real method

                                                              (a)                                                 (b)

Fig. 3: Mean D distribution for (a) normal and (b) uniform spatial distribution of nodes resulted from approximate 
Manhattan and real method

Connectivity graph in static case: DDSRR should be 
calculated for a specific R. For R=0.25 km DDSRR is 
shown in Fig. 2. The networks include 1000 nodes. 
Obviously in both distributions real and approximate 
results have many differences. Using approximate
Manhattan measure the maximum frequency of
occurrence of a node with a degree specified on the 
horizontal axis increases and generally the degree of 
nodes decreases according to real measure.

MDDVRR using real and approximate methods are 
shown in Fig. 3. Both normally and uniformly
distributed networks have the same pattern of
MDDVRR, but with different scales. Obviously when 
R is increased, DDSRR of nodes is increased because 
the maximum radio range is increased and more nodes 
can communicate together. In the normally distributed 
network, MDDVRR reaches its maximum at R~5 km, 
but in a uniformly distributed network, it reaches its 
maximum at R~1.4 km. As can be seen from Fig. 3, 
real mean D distribution is bigger than or equal to the 
approximate mean D distribution for the same R. It 

means that using Manhattan approximate method
generates some miss and no false positives and this is 
an advantage as mentioned above. Also Fig. 3 shows 
that approximate results are less than real results for 
similar R and both curves are incremental. So we can 
use a bigger R in approximate calculations to reduce the 
error. We tried to find the best modification coefficient
m to minimize rms error. The average rms error for
different values of m was calculated in each
distribution. The results were averaged for different 
values of R. Figure 4 shows the results for different 
number of nodes. In Fig. 4(a) minimum rms error for 
different N is for z = 5 and so m = 1.26 and in uniform 
case, Fig. 4(b), it is satisfied for 

z = 7 and so m = 1.27.

For Rm = 1.27R in uniform distribution the best 
similarities are seen between real and approximate
results because the rms error is minimum. In normal 
distribution  for  Rm=1.26R  minimum rms error results. 
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                                                       (a)                                                                     (b)

Fig. 4: RMS error variations versus modification factor for different N for (a) normal and (b) uniform spatial 
distribution of nodes

                                                       (a)                                                                         (b)

Fig. 5: DDSRR for (a) normal and (b) uniform spatial distribution of nodes resulted from modified approximate 
Manhattan and real methods

                                                         (a)                           (b)

Fig. 6: MDDVRR for (a) normal and (b) uniform spatial distribution of nodes using modified approximate and real 
methods

DDSRR curves using modified R in approximate
Manhattan   measure  are  shown  in  Fig. 5  which 
seem very similar to real one in both spatial
distributions  of  nodes. Therefore modified
approximate measure has negligible effect on
congestion/interference characteristics of the network. 

Figure     6     shows   the   MDDVRR   curves 
using modified R which decreases rms error
appreciably  in  both  distributions. Modified
approximate measure has negligible effect on
congestion/interference characteristics of network as 
shown in Fig. 6.
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(a)                                                                      (b)
Fig. 7: Mean D distribution rms Error comparison of the best modified R and traditional R for (a) normal and (b) 

uniform spatial distribution of nodes

                                         (a)                                                                          (b)

Fig. 8: %H distribution versus R using traditional R and modified R for (a) normal and (b) uniform spatial
distribution of nodes

Table 1: Comparison of max. rms error for different methods
Max. rms error for Max. rms Error Manhattan measure fractional
manhattan measure for modified reduction of max. rms error

Uniform dist. 38.0 7  5.43
Normal dist. 35.8 5  7.16

Table 2: Comparison of rms error curve limited for different methods
rms error curve limited rms error curve limited area for Fractional reduction of rms
area for manhattan measure modified manhattan measure error curve limited area

Uniform dist. 15.8 2.66 5.94
Normal dist. 26.87 3.75 7.17

Similar results from Fig. 2, 3, 5, 6 show that
MDDVRR can be used as a interference/congestion 
measure instead of DDSRR.

For comparing accuracy of different methods,
maximum rms error and rms error curve limited area
are used. In Fig. 7 maximum rms error and rms error 
curve limited area are compared for traditional and 
modified R. 

The  rms  error  for  our modified Manhattan 
method  is  decreased. This is shown by comparing 

max. rms error and rms error curve limited area of
methods. Max. rms error is decreased by 5.43 and 7.16 
times for uniform and normal distribution of nodes 
respectively   as   shown   in  Fig.  7  and  summarized 
in Table 1.

Table 2 shows rms error curve limited area of
methods. The rms error curve limited area in using 
Manhattan measure with modified R, is reduced by 7.17 
and 5.94 times for normal and uniform distributions 
respectively as shown in Table 2. 
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Table 3: Comparison of %H for different methods

%H for manhattan %H for modified Fractional
measure manhattan measure reduction of %H

Uniform Dist. 18.5 3.8 4.87
Normal Dist. 17.5 3.8 4.61

                                                         (a)                                                                      (b)

Fig. 9: Connectivity probability using different measures for (a) 10 and (b) 100 nodes in normally distributed 
networks

                                                    (a)                                                                            (b)

Fig. 10: Connectivity probability using different measures for (a) 10 and (b) 100 nodes in uniformly distributed 
networks

We determined the connectivity matrices for every 
R by real and approximate measures and compared 
them using the graph difference metric, %H. In Fig. 8 
curves of %H using traditional and modified R for both 
distributions are shown

The results are summarized in Table 3.
Dissimilarities  of  approximate  methods  are  shown
as %H. 

The results obtained show an appreciable
improvement in accuracy using our modified
Manhattan measure. 

Connectivity probability in static network: We used 
formula (19) in our Monte Carlo simulations to
determine the connectivity probability. We constructed 
1000 random networks uniformly. Then the

connectivity of every network was investigated and the 
fraction of connected networks was determined. In the 
static case, link probability was determined for different 
numbers of nodes (5, 10 and 50). The results show that 
as the number of nodes increases, the probability of 
connection increases for the same dR. The connectivity 
probability for normally distributed network with
different number of nodes using different measures are 
shown in Fig. 9. 

The connectivity probability for uniformly
distributed network with different number of nodes
using different measures is shown in Fig. 10.

The connectivity probability for uniformly and
normally  distributed  networks  with  different number 
of nodes using Manhattan approximate measure are
shown in Fig. 11.
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                         (a)                                                                        (b)

Fig. 11: Connectivity probability using Manhattan measure for (a) normally and (b) uniformly distributed networks

                      (a)                                 (b)

Fig. 12: Comparison of connectivity probability using modified Manhattan and Euclidian measures for various 
number of nodes in (a) normally and (b) uniformly distributed network

                                              (a)                                                                          (b) 
Fig. 13: Mean reliability of links for uniform spatial distribution of nodes using different methods for (a) a = 0.05 

and (b) a = 0.1

Also, the connectivity probability was calculated in 
networks using Euclidian and modified Manhattan
measures. Figure 12 shows the comparison of
connectivity probability for different node numbers for 
these methods. The network connectivity probability 
increases for any given R when there are more nodes as 
shown in the figure. 

The  performance  of  modified  Manhattan
measure    is     very   close    to   Euclidian  measure 
and   much   better   than  Manhattan  measure  based
on  an  analysis  of the rms errors of the two
approximate methods. The rms errors for different
measures   and   different   conditions   are  summarized 
in Table 4.
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Table 4: Rms error for calculating connectivity probability for different parameters and methods 
rms error for rms error for modified Fractional reduction 

Distribution of Nodes Number of nodes manhattan measure manhattan measure of rms error
Uniform 5 0.1592 0.0125 12.74

10 0.1398 0.0123 12.57
50 0.1720 0.0137 12.55

100 0.1105 0.0123 8.98
Normal 5 0.1577 0.0078 20.22

10 0.1696 0.0087 19.49
50 0.1793 0.0087 20.61

100 0.1154 0.0134 8.61

                                                      (a)                                                                          (b)

Fig. 14: Mean reliability of links for normal spatial distribution of nodes using different methods for (a) a = 0.05 and
(b) a = 0.1

Link reliability in static case: For different measures 
and different distribution of nodes the mean link
reliability of the network was evaluated. In our
simulations we selected D = 5.9 for uniform
distribution and D = 9.1 for normal distribution of
nodes.

For static condition the variation of mean
probability of links versus dR using different methods 
for a = 0.01, 0.03, 0.05 and 0.1 was investigated. To 
implement our modified Manhattan method, the
parameters D and dR in equations (9) and (10) were 
multiplied by modification factor. Figure 13 shows the 
mean link reliability for uniformly distributed network 
for two different a. Obviously as a decreases the mean 
reliability of links decreases (a and R on the figures 
denote a and dR).

For small values of dR, according to a and D the 
link reliability is approximately constant. For larger
values of dR the mean link reliability increases by 
increasing the dR.

The mean reliability of links for normally
distributed network was determined using different
methods. The  results  for a = 0.03 and 0.05 are shown 
in  Fig. 14. The  mean  link  reliability  behaves  similar 
to last case. 

In Table 5 the results are summarized for different 
a and different distribution of nodes. The rms error of 
calculations using different methods are compared and 
the reduction of rms error using modified Manhattan 
method is introduced. 

As shown for dR = 0.7 in uniform distribution of 
nodes, the mean reliability is equal 0.68 for a = 0.1. It 
reduces  to  about  1/2 for a = 0.05 and to about 1/3 for 
a = 0.03. Also for dR = 2.5 in normal distribution of 
nodes, the mean reliability is equal 0.8 for ideal
condition (a=1). As a decreases the reliability decreases 
for the same dR and for a = 0.1 it is equal 0.36.

Monte carlo simulations in dynamic case: In previous 
section a modification factor for R was introduced to 
improve the accuracy of approximate Manhattan
measure. We name this method as modified Manhattan 
in the remainder of the paper. For simulation of
dynamic network, boundless simulation area mobility 
model was used. In order to carry out the Monte Carlo 
simulations in dynamic case our experiments were set 
up with nodes with specification (x, y, v, θ) in which v 
is the velocity and θ is the angle of movement. Velocity 
v is the distance by which a node moves in θ direction 
in every step of the calculations. Parameters v and θ are 
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Table 5: Rms error for calculating mean reliability of links for different parameters and methods 

Distribution rms error for modified rms error for Fractional reduction
of nodes a RL Manhattan measure Manhattan measure of. rms error

Uniform RL for dR = 0.7
0.10 0.68 0.0049 0.1436 29.03
0.05 0.37 0.0054 0.0978 18.11
0.03 0.21 0.0038 0.0587 15.45
0.01 0.004 0.0009 0.0134 14.89

Normal RL for dR = 2.5
0.10 0.36 0.0008 0.0934 116.80
0.05 0.15 0.0005 0.0431 86.20
0.03 0.07 0.0003 0.0217 72.33
0.01 0.01 0.0001 0.0039 39.00

Fig. 15: Comparison of %H distribution for traditional 
Manhattan method and modified Manhattan
method

determined based on uniform distribution because only 
the number (or percentage) of low speed nodes is 
important. In other words the time consumption of our 
algorithm is based on the number of low speed agents 
and the type of their distribution does not affect the 
results. In order to generate θ, the random number ~

which is limited between [0,1], is multiplied by 2p.
Also in order to limit the velocity of each node, ~

which is similar to ~  is multiplied by a velocity
coefficient, Cv which is less than one. This means that 
the velocity, v, of every node is the result of
multiplication of ~ , Cv and the size of the square region 
in which the nodes are distributed. In every step, nodes 
move to a new location based on their velocity and 
direction and their positions are considered to be fixed 
during the calculations. To speed up the calculations 
low speed nodes can be considered to be stationary as 
considered by Peiravi and Tolooei in [22]. 

Connectivity graph in dynamic network: Figure 15
shows %H for traditional Manhattan method and

modified Manhattan measure in dynamic network. As a 
realistic example, maximum v (or Cv) was considered 
0.01 km per step of calculations and R=0.25 km (as 
considered by Barrett et al. in [10]).

As shown, the accuracy of our modified Manhattan 
is better than traditional Manhattan method. As the 
number of steps increases the number of the links 
decreases, therefore dissimilarity between results of two 
approximate method decreases. 

Computational time for implementing different
methods for 100 step movement and computation was 
measured. Computational time for Euclidian method
was 109945 ms while for Manhattan-based approximate 
methods was 28945 ms. This shows that using our
proposed method the speed of calculations improves 3.8 
times relative to Euclidian method.

Connectivity probability in dynamic network:
Connectivity probability of a mobile ad hoc network 
using boundless simulation area mobility model was 
determined for uniformly distributed networks
including different number of nodes. Calculations were 
performed during 20 step of motion. After every step 
the mobile agents have a pause. The maximum velocity 
of agents was considered 0.  of the dimension of 
square region in which the nodes were distributed 
originally, per step. 

In Fig. 16 for different number of nodes and
different measures connectivity probability of mobile 
networks are shown. 

As shown, as the number of nodes increases, the 
connectivity probability increases for the same radio 
range. In Table 6 the rms error of different measures are 
shown.

As shown using our method the reduction of rms 
error is very appreciable relative to traditional
Manhattan method.

Table 7 shows the computational time of
connectivity probability for different methods.
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Table 6: Rms error for calculating connectivity probability for different parameters and methods using boundless area mobility model for 
uniform distribution of nodes 

Number rms error for rms error for modified Fractional reduction
of nodes Manhattan measure Manhattan measure of rms error
5 0.1260 0.0053 23.77
10 0.1275 0.0049 26.02
50 0.1288 0.0045 28.62
100 0.1281 0.0050 25.62

Table 7: The computational time for connectivity probability for different methods

Number of Computational time for Computational time for modified Fractional reduction of
nodes euclidian measure (ms) manhattan measure(ms) computational time

200 16833 9778 1.72
500 231666 155000 1.49

Table 7: Comparison of rms error for different methods
rms error for rms error for modified Fractional reduction

a R Manhattan measure Manhattan measure of rms error

0.05 0.3 0.0374 0.0024 15.58
0.5 0.0512 0.0032 16.00
0.7 0.0599 0.0031 19.32
1.0 0.0672 0.0027 24.89

0.1 0.3 0.0975 0.0042 23.21
0.5 0.0997 0.0035 28.49
0.7 0.1055 0.0036 29.31
1.0 0.1164 0.0033 35.27

            (a)                                                                         (b)
Fig. 16: Comparison of connectivity probability using boundless simulation area mobility model for two different 

node numbers in (a) 100 and (b) 5 nodes uniformly distributed network

As shown, when the number of the nodes increases 
2.5 times, the computational time increases 13.76 times 
for Euclidian method and 15.85 times for both
approximate methods. Therefore, the reduction of
computational time will be very effective.

Link reliability in dynamic network: In this case
stochastic reliability model is FS-based and mobility 

model is Boundless Simulation Area mobility model. 
Fig. 17 shows mean link reliability using Manhattan 
approximate method for simulation of 50 steps of
motion.

Maximum available link reliability depends on a 
and R. Link reliability increases as dR or a increase. 

Figure 18 shows mean link reliability for uniformly 
distributed   networks   including  moving  agents  using
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Table 8: The computational time for link reliability for different methods

Number Computational time using Computational time using Computational time using modified Fractional reduction of
of nodes Euclidian measure(ms) Manhattan measure(ms) Manhattan measure(ms) computat ional Time

1000 166.7 55.6 55.6 3

                                                    (a)                                                                             (b)
Fig. 17: Mean link reliability for uniform distribution and FS model (Cv=0.03), for (a) a = 0.05 and (b) a = 0.1 using 

Manhattan method

                                                    (a)                                                                               (b)
Fig. 18: Mean link reliability for uniform distribution and FS model (Cv=0.03), for (a) a = 0.05 and (b) a = 0.1 using 

Euclidian and modified Manhattan methods

Euclidian and our modified Manhattan methods. Both 
approximate methods require less computational cost 
relative to the real method. Obviously modified
Manhattan measure shows better accuracy relative to 
traditional Manhattan measure. Using these plots, one 
can decide different conditions to provide desired
reliability.

The rms error of approximate methods and
fractional reduction of rms error for different
parameters are shown in Table 7. The modified
Manhattan method improves the accuracy appreciably 
relative to the traditional Manhattan method.

From  the  comparison  of  computational  time  for 
different  methods  shown  in  Table  8  it  can be see 
that the modified Manhattan method improves the
accuracy  appreciably  relative  to  traditional
Manhattan method. 

RESULTS AND CONCLUSIONS

In this paper a new approximate but fast method 
for computing connectivity-based methods for static 
and dynamic networks has been presented. Based on 
connectivity  graph  computations,  a  modification 
factor is introduced to increase accuracy of approximate 
Manhattan method. Connectivity graph computations 
for  a  normally  distributed  and  a uniformly
distributed network each with 1000 nodes have been 
compared. Three different methods were used for
approximating connectivity: real method using
Euclidean distance, traditional approximate method
using  Manhattan  measure  and  our modified
Manhattan  measure  using  mo dified  connectivity 
range, R. The results were compared with the real
method   to   show the  effectiveness   of   our  proposed 
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modification factor for Manhattan measure to reduce 
the approximation error. 

Percentage Hamming distance (%H), DDSRR and 
MDDVRR are used as graph comparison metric and 
measures. Also computational time and accuracy of
methods are used to compare the performance of the 
methods. In static case, using modified Manhattan
method for different distributions, %H decreases more 
than 4.5 times relative to traditional Manhattan method. 

In dynamic case, the dissimilarity decreases to 0.5 
relative to traditional Manhattan, while the speed of 
calculations increases by 3.8 relative to Euclidian
method.

Computation of connectivity probability using
traditional  Manhattan  measure  and modified
Manhattan  measure  in  static  and  dynamic networks 
for  different  conditions  was  investigated. In static 
case,  using  our  method  %H decreases at least 8.6 
times for different conditions relative to traditional
Manhattan measure. In dynamic case, using our
method,  speed  of  computations  increases by about 
1.49  for  a  network  including  500  nodes  relative  to 
the Euclidian method.

Also computation of propagation-based reliability 
model, FS model, using traditional Manhattan measure 
and modified Manhattan measure in static and dynamic 
networks for different conditions was investigated. In 
static case, using our method rms error decreases at 
least 14.89 times for different conditions relative to 
traditional Manhattan measure. In dynamic case the
speed of computations increases by about 3 relative to 
Euclidian method when using our method. 

Our proposed measure requires less calculations 
with respect to Euclidean measure while it shows better
accuracy with respect to traditional Manhattan method. 
The computational time results reported here have been 
obtained using Turbo C++ programming on an Intel 
Pentium D 3.00 GHz PC. Other results obtained using 
MATLAB programming. 
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