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Abstract: Estimation of the mean lifetime and reliability of sophisticated systems is a challenging problem 
in many engineering applications. This is especially important when the study is concerned with both burn 
in and field operation periods since the hazard rate is no longer constant and the underlying processes are 
non-homogenous. In such cases, theoretical development of the solution is very tedious and obtaining 
results for the expected lifetime and reliability of complex systems is almost impossible. Monte Carlo 
simulations provide a viable alternative for estimation of the expected lifetime and reliability in such 
situations. Predictive calculations for the mean time to failures may be carried out using MIL-HDBK-217F
for expected operating conditions of the system. However, these estimates are only valid for the field
operating conditions assuming that the parts lifetime obeys an exponential probability distribution.
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INTRODUCTION

Reliability and expected lifetime are very
important issues in modern complex systems, especially 
in military applications, life-critical applications and
high reliability industrial and consumer products. The
reliability of a system is affected by the reliability of its 
components and the way they are interconnected to 
serve its intended mission under certain operating
conditions. Systems have become so complex that the 
study of their reliability requires extensive modeling 
and simulation. Moreover, the various portions of the 
life of any system pose different hazards to the system 
which makes a thorough study really difficult.

Monte Carlo simulations are very useful in the
study of complex systems  and many researchers have 
used them in order to simulate complex, nonstandard 
multivariate distributions. There are many reliability 
problems in which sophistication leads us to rely on the
results of Monte Carlo simulations. For example, in 
studying the importance of components, theoretical
approaches lead to NP-difficulty. Pan and Tai [1]
presented an algorithm to compute variance importance 
which is a measure of uncertainty importance for
system components. A simple equation was derived for 
this measure and Monte Carlo simulations were used to 
obtain numerical estimates for a simplified fault tree for 
a reactor protection system as an example. Their

suggested algorithm overcomes non-polynomial
difficulty which existed in earlier methods for
computing uncertainty importance. Moreover, it was 
simpler, more accurate and more practical and showed 
the direct relationship between probabilistic importance 
and uncertainty importance.

Two notable examples of Markov chain Monte
Carlo are the Metropolis -Hastings and Gibbs sampling 
which are easy methods for the generation of random 
samples and estimates. The Metropolis -Hastings
algorithm which was proposed by Hastings [2] to 
sample from complicated, high-dimensional probability 
distributions is more general.

Chib and Greenburg [3] presented a detailed
exposition of the Metropolis -Hastings algorithm to
simulate multivariate distributions along with
derivation and applications.

Gibbs sampling is an especial case of Metropolis -
Hastings algorithm on an element by element basis and 
is explained in full by Casella and George [4]. The 
Gibbs sampler is a popular Markov chain Monte Carlo 
routine for generating random variates from
distributions otherwise difficult to sample. Therefore, 
the Gibbs sampling is very useful in specific
applications. There are still certain simplifying
assumptions needed when either one is used. 

Another issue which makes the study of the
reliability of complex systems difficult is redundancy
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especially when we deal with non-homogenous
processes. Lewis et al. [5] presented a Monte Carlo 
methodology for the reliability simulation of highly 
redundant systems where two forms of importance
sampling, forced transitions and failure biasing were 
used to effectively simulate large sets of continuous-
time Markov equations with the results plotted as
continuous functions of time. Lewis et al. [5] showed 
that a modification of the sampling technique allows the 
simulation of both non-homogeneous Markov processes 
and non-Markovian processes involving the
replacement of worn parts. They examined a few
benchmark problems and showed that for problems 
with large numbers of components, Monte Carlo
simulations result in less computing time by as much as 
a factor of twenty from the Runge-Kutta Markov solver
employed in the NASA code HARP.

Existing software for reliability calculations are
limited in scope, hard to use and not applicable to burn 
in period. Therefore, Monte Carlo simulations are used 
in this study to estimate the expected lifetime and
reliability during burn-in and in the field operation. The 
present research was carried out using Borland C++ 
programming language on an IBM PC computer.

RELIABILITY AND HAZARD RATE

Reliability is the probability of successful
operation during the mission and under pre-specified
conditions and can be calculated using various
techniques including RBD, Markov state space,
analytical, or Monte Carlo Simulations. In this research 
the Weibull probability distribution function is used to 
describe the lifetime of a component since the hazard 
rate is not constant during burn-in and in the filed 
operation periods of life as can be seen from the bathtub 
curve of Fig. 1. The hazard rate is a decreasing function 
of time during the initial period of life, or the burn-in
period. Then it flattens out and is nearly constant for the 
useful period of life of the part. Naturally, this period 
should be the operation period of the part, if it has gone 
through its initial burn-in period before. In some
industries, this is not the case. They do very little 
testing and burn-in and let the part experience the initial 
period of its life in field operation. The high hazard rate 
during this period implies that there may be many early 
failures in the field. However, certain warranties are
provided for customers so that they may return the 
failed product and have it repaired at no cost or with 
minimal expenses. This is naturally not a good option 
for military, life-critical or high reliability products.
The last stage of life as shown in Fig. 1 is the wearout 
period during which the hazard rate is increasing with 
time. Some systems such as power plants exist in many 

Fig. 1: The bath tub curve for the hazard rate

countries and are still operational in this period of life 
due to economic reasons. The way to deal with the 
increasing hazard rate is through planned maintenance 
which helps postpone the increasing trend in the
hazard rate. 

The failure rates for the parts which make up the 
electronic circuits can also be either estimated based on 
the generic rates of MIL-HDBK-217F [6] or other data 
sources such as Telcordia [7] model. A comparison of 
the calculated results of estimates using these two 
models shows that the Telcordia (Bellcore) calculations 
are more optimistic than the MIL-HDBK-217
calculations. There are various reasons for the
variations between models and this also depends on 
the particular component and its associated stress
factors. The advantage of the Telcordia model is that it 
provides the capability of considering burn-in data, 
laboratory test data and field data in the failure rate 
calculation. Burn-in data is used to determine the 
first year multiplier, which is an indication of infant 
mortality. The disadvantage of the Telcordia model is 
that the operating environments it supports are 
limited. In addition to three different Ground-based
environments, it only supports an Airborne,
Commercial environment and a Space, Commercial
environment, while MIL-HDBK-217 supports many
different types of ground, sea, air and space
environments. Moreover, Telcordia uses four standard 
quality levels which are the same for all components 
while MIL-HDBK-217 uses quality levels that differ
from one part type to another. 

The hazard rate for the Weibull probability
distribution function may be described as in (1)

1(t) t− αλ = λ (1)
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where λ1>0, λ1, is the scale parameter and α is the 
shape parameter. The reliability function is described 
as in (2)

1
1t

1R(t) e
−α−λ

−α= (2)

This function may be used to describe the lifetime 
and reliability in burn-in, field operation and wearout 
periods of life. When (0<α<1), the hazard rate is a 
decreasing function of time and may be used in the 
burn-in period of life. When (α = 0), the hazard rate is 
constant and the reliability function exactly follows the 
exponential probability distribution function. This may 
be used to model the field operating life of the
component.

THE PROCEDURE FOR 
MONTE CARLO SIMULATIONS

Monte Carlo simulations are simple to do. The only 
catch is to get a clear understanding of how to perform 
them. The usual case is that we have a non-uniform
distribution function fT (t) for the stochastic variable of 
interest T, say lifetime in reliability studies. We use the 
cumulative distribution function FT (t) which is bound 
to be between zero and one. Thus we first generate 
uniformly distributed random numbers between zero 
and one using (3)

U = FT (t) (3)

Then we may use the inverse cumulative function 
to calculate t using (4) as shown in Fig. 2. 

1
Tt F (u)−= (4)

This may be done for any component with any 
assumed probability distribution function for its
lifetime. To perform the reliability study for the system, 
we must follow the following procedure:

• Estimate the cumulative probability distribution of 
each component in the system.

• Generate a uniformly distributed random number 
between zero and one for each of the parts in the 
system and use the inverse of the cumulative
distribution function as shown in Fig. 2 to estimate 
time to failure data for each part in the system.

• Find the time to failure of the system using the 
failure time data generated for the components of 
the system. In systems whose reliability block
diagram is such that the components are in series,
then the time to failure for the system is the same

Fig. 2: The random variables T with FT (t) and uniform 
U for the generation of data for Monte Carlo 
simulation

as the time to failure for the weakest component-
that is the minimum of the time to failures of the 
components in the system. On the other hand, if the 
components in the system are redundant so that 
they are all in parallel, then the time to failure for 
the system is the maximum of the time to failures 
of the components which make up the system. In 
other systems, the reliability function must be
developed to relate the reliability of the parts to the 
reliability of the system.

• Repeat the procedure outlines in steps 1 to 3 over 
and over again in order to reduce the error in the 
estimate by averaging the results. This repetition
should be carried out until the changes in the 
averaged result become less than an accepted
amount. If n denotes the number of times for which 
the simulation is carried out and the results are 
averaged, then the mean time to failure for the 
system averaged up until the nth step would be as 
shown in (5) 

n

k 1

TTF(k)

MTTF(n)
n

==
∑

(5)

where TTF(k) denotes the time to failure for the system 
at the kth step of the simulations. 

When n approaches infinity, the MTTF thus
estimated would approach a constant value. Thus the 
system MTTF is given as (6)

nMTTF lim MTTF(n)→∞= (6)

THE SYSTEM UNDER STUDY

The system under study is a high reliability
consumer product. It was thoroughly investigated down
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Fig. 3: The reliability block diagram of the system under study showing its various subsystems

Fig. 4: Averaged out MTTF (hours) results from Monte Carlo simulation runs

to part level in terms of the effect of each part and each 
subsystem on the operation of the overall system. The 
system consists of seven subsystems which are
comprised of a variety of types of mechanical, electrical
and electronic components. The reliability block
diagram of the system is shown in Fig. 3 where the 
series role of the subsystems  in the reliability of the 
system is shown. This is expected of high-reliability
consumer products where no extra money is available 
to implement redundancy. In such products, improved 
reliability should be built into the system by integration
of parts as shown by Peiravi [8], or derating of parts, 
good manufacturing procedures and proper highly
accelerated lifetime testing.as shown by Peiravi and
Dehghanmongabadi, N [9].

THE MTTF OF THE SYSTEM FOR 
ITS FIELD OPERATION PERIOD OF LIFE

The mean time to failure (MTTF) of the system
may be found by using the relevant MTTFs of its 
various subsystems and the reliability block diagram 
or the reliability model of the system versus its
subsystems. To estimate the failure rate for the system
during the field operation life, the RBD technique along 
with failure rate data from MIL-HDBK-217F may be 
used. For example, the general failure rate for a resistor 
is  as shown in (7)

p b T p S Q Eλ = λ π π π π π (7)

where λb is the base failure rate, πT is the temperature 
factor, πp is the power factor, πS is the power stress 
factor, πQ  is the quality factor and πE is the
environment factor. There is a similar relationship for 
other devices with appropriate factors to include
stresses and operating environment. Theses calculations 
were carried out using an excel spreadsheet for all the 
subsystems and the overall failure rates of the
subsystems are shown in Table 1. The failure rates of 
the parts during burn-in are much higher than their 
equivalent values in the useful period of life. The
probability distribution function of life is also not a 
simple one. The mean time to failure for the subsystems 
were estimated using Monte Carlo simulations as
outlined above and are tabulated in Table 1. 

The mean time to failure of the system during its 
burn in period (MTTFB) may be estimated by running
the simulation once. However, this result would not 
have a high confidence bound. To get a better estimate, 
we run the experimental simulation over and over
again. Averaging the MTTFB over many runs in Monte 
Carlo simulations is performed in order to reach an 
estimate of MTTFB which has a very high confidence 
bound as shown in Fig. 4. As it can be seen the estimate 
of MTTFB is very rough in the beginning, but reaches a 
steady state only after nearly 5000 runs of the Monte 
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Table 1: Hazard rate and mean time to failure in the burn in period and in the field operation 

Ratio of Failure Rate in the Mean time to fail in Mean time to fail in Subsystem Hazard
Burn in Period to the Failure the field operation the burn in period- Rate in Failures
Rate in the Field Operation MTTF (Hours) MTTFB (Hours) per Million Hours Subsystem Name Subsystem

16.908 23635.07 1397.82 42.310 Display Panel 1
33.668 1556.08 46.218 642.640 Drive Panel 2
9.2850 11842.31 1275.40 84.443 Power Supply 3
9.5730 5666.30 591.91 176.482 Control Unit 4
14.797 34482.76 2330.42 28.999 Case 5
33.565 65573.77 1953.62 15.250 Terminals 6
19.337 1009.98 52.53 990.124 Power Distribution 7

Fig. 5: Subsystem Hazard Rate in Failures per Million Hours

Carlo simulations. This average value given in (5)
approaches the true value with a very high confidence 
bound after 15000 runs of the experimental simulation 
as shown in Fig. 4.

The mean time to failure in the field operation may 
be easily obtained from the hazard rate and the results 
are shown in Table 1. 

The last column of Table 1 shows the ratio of the 
failure rate in the burn in period to the failure rate in the 
field operation. The results are plotted in the form of a
histogram in Fig. 5-7 that show us which subsystems
have a higher failure rate and need reliability
improvement.

The failure rates of the parts during burn-in are 
much higher than their equivalent values in the field
operation period of life. The probability distribution 
function of life is also not a simple one during burn in.
The mean time to failure for the subsystems were
estimated using Monte Carlo simulations as outlined 
above and the results are shown in Fig. 6.

Using the estimated failure rates for the field
operation obtained from the MIL-HDBK-217F and

shown in Table 1, the mean time to failure in the field 
operation is found as shown in Fig. 7.

SYSTEM FAILURE RATE AND SYSTEM 
RELIABILITY FUNCTION

The failure rates tabulated above and the RBD of the 
system shown in Fig. 3 may be used to compute the 
reliability and cumulative unreliability functions for
the system as a function of time. Since the subsystems
act in a series fashion in the RBD model, the failure 
rates may be added together to form the system
failure rate as in (8)

System 1 2 3 4 5 6 7λ = λ + λ + λ + λ + λ + λ + λ (8)

Then the system reliability may be computed as in (9)

Systemt
sR e−λ= (9)

And the Cumulative Unreliability function may be 
computed using (10)
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Fig. 6: Mean time to failure of the various subsystems in the burn in period
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Fig. 7: Mean time to failure of the various subsystems in the field operation

Fig. 8: The reliability and cumulative unreliability function vs. time
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SystemSystemQ (t) 1 R (t)= − (10)

The reliability and the cumulative unreliability
functions thus computed vs. time are shown in Fig. 8.

DISCUSSION OF RESULTS

There is an important result that we may conclude 
from the last column of Table 1 in which the ratio of the 
failure rate of each subsystem in the burn-in period over 
its failure is in the field operation are tabulated. Note 
that the highest ratio is nearly 33 and that is for the 
terminals and drive panel. These two subsystems
contain more mechanical parts and wiring than the rest 
of the system. The next highest ratio is nearly 14 to 19 
for the case, the display panel and the power
distribution subsystems which contain mechanical
parts, fuses, keys, switches and relays. Then the power 
supply and the control unit which mostly contain power 
electronic and electronic parts have the lowest ratio of 
nearly 9. This comparison effectively shows that the 
nature of the difference between the subsystems also 
affects their mean lifetime in the burn in period and 
their expected lifetime in the field. The system MTTF is 
also obtainable from Fig. 7 and is somewhat less than 
1000 hours.

CONCLUSIONS

In this paper, the estimation of the mean time to 
failure and system reliability for the burn-in and the
useful operating period of life were both discussed. It 
was shown that Monte Carlo simulations can be
effectively used in order to estimate the lifetime and 
reliability in such cases where the non-homogeneous
Markovian stochastic nature of the time to failure of the 
parts makes a theoretical approach almost impossible. 
Averaging of results after repetitions of the Monte
Carlo simulations was used and it was shown that after 
nearly 15000 iterations, results with a very high
confidence bound are obtained. The MTTF of the

system was obtained from the reliability plot to be
somewhat less than 1000 Hours. 
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